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Abstract

It is well known that many disordered magnetic materials exhibit spin-

glass freezing at low temperatures. However the nature of the spin-glass

freezing is not yet completely understood. The most fundamental question

is whether or not this freezing is a phase transition caused by frustrated

interaction between spins. Recently, it was found out that ferrofluids, which

are stable dispersions of fine ferromagnetic or ferrimagnetic particles, ex-

hibit spin-glass-like behavior at low temperatures. Some interpretations

have been proposed for the spin-glass freezing on the basis of a progressive

freezing of the moments of superparamagnetic clusters. To solve this prob-

lem, detailed studies of magnetic properties not only for typical spin glasses

but also for fine particles are required. The author reports the experimental

results and the quantitative analysis of the susceptibilities and the magne-

tization of ferromagnetic fine cobalt particles, which were precipitated in

a Cu97Co3 alloy. The author also reports the experimental results for a

typical spin-glass Au96Fe4 alloy, and compared the results of Cu97Co3 with

those of Au96Fe4.

Some characteristic behavior has been observed in Cu97Co3 at low tem-

peratures: (1) The linear susceptibility (χ0) has a maximum. (2) The mag-

netization exhibits irreversible behavior. (3) The nonlinear susceptibility

χ2, which is the coefficient of the H
3 term of the magnetization, has a nega-

tive peak around the temperature where χ0 exhibits the maximum. These

results are similar to those of the spin-glass Au96Fe4 alloy. However, the

negative peak in χ2 is very broad compared with that of spin glass Au96Fe4.

Furthermore, χ2 is proportional to T
−3 at high temperatures. It is clear
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that the temperature dependence of χ2 of Cu97Co3 is very different from

that of Au96Fe4; χ2 in the spin glass (Au96Fe4) shows divergent behavior,

while χ2 in the fine-particle system (Cu97Co3) does not.

In order to clarify the difference between the spin glass and the fine-

particle system, an analysis has been performed based on the simplified

superparamagnetic blocking model with no interaction between the parti-

cles. The temperature dependence of the observed susceptibilities and the

magnetization of Cu97Co3 is well explained quantitatively by the blocking

model; the behavior of susceptibilities in fine-particle systems is expressed

as the summation of linear and nonlinear terms of the Langevin function,

which describes the magnetization of noninteracting fine-particle systems,

over the particle volume distribution. On the other hand, the divergent

behavior of χ2 in Au96Fe4 cannot be explained by the blocking model. The

author concludes that the nonlinear susceptibility χ2 shows clearly the dif-

ference between the spin-glass transition and the progressive freezing of the

cluster moments.
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Section 1

Introduction

Studies of the magnetic properties of dilute magnetic alloys (e.g ., Au-Fe,

Cu-Mn) which contain a small amount of magnetic impurities in nonmag-

netic metals have been a subject of interest for half a century.1) It was found

in 1964 that the magnetic susceptibility of such alloys measured in a large

magnetic field (≈ 1 kOe) shows a broad maximum at low temperature.2)

In 1972, Cannella and Mydosh3) observed a sharp cusp in the low-field

(≈ 5 Oe) ac susceptibility of Au-Fe alloys. This observation has been re-

garded as evidence that such alloys undergo upon cooling a magnetic phase

transition from a paramagnetic to an unknown new magnetic state, and

led to a great deal of experimental and theoretical work. Edwards and

Anderson4) proposed in 1975 that the phenomenon described above results

from a new type of phase transition, called “spin-glass transition.” Ac-

cording to their model, the magnetic impurities are arranged at random in

the nonmagnetic matrix. The impurity spins interact with a potential that

oscillates as a function of the distance between the spins (Ruderman-Kittel-

Kasuya-Yosida (RKKY) interaction). As a result, the spins are frozen ran-

domly in directions (spin-glass freezing) below the transition temperature

Tg, because contradictory ordering between two magnetic spins depending

on two different paths, called frustration, takes place. The materials exhibit

the spin-glass transition were named “spin glasses.”

The magnetic properties of spin glasses have been studied extensively.

However the nature of spin-glass freezing is still not completely understood.
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In particular, the behavior of the specific heat led to the most serious prob-

lem. According to the phase transition model,4) the magnetic specific heat

shows a cusp-like peak at Tg. However, such anomaly in the specific heat of

spin glasses has not been observed.5) This is taken as evidence against the

existence of the phase transition. Wohlfarth6) insisted that the spin-glass

freeing is not the phase transition but a progressive freezing of the moments

of superparamagnetic clusters. He considered that the magnetic atoms are

formed ferromagnetic clusters. These clusters exhibit paramagnet-like be-

havior (superparamagnetism) at high temperatures, but the cluster mo-

ments are blocked in the direction of the anisotropy axis at low tempera-

tures.

Recently, Chantrell et al .7) reported that ferrofluids, which are stable

dispersions of fine ferromagnetic or ferrimagnetic particles, exhibit spin-

glass-like behavior: e.g ., susceptibility maximum, irreversibility between

field-cooled and zero-field-cooled magnetization, and time-dependent mag-

netization. They insisted that such spin-glass-like behavior supports the

suggestion of Wohlfarth.6) However, it is not clear whether or not all the

magnetic properties of fine-particle systems are the same as those of typical

spin glasses (e.g ., Au-Fe alloys).

As reviewed above, the nature of the spin-glass freezing is still contro-

versial. Detailed studies of magnetic properties not only for typical spin

glasses but also for fine particles are required to clarify whether or not the

spin-glass freeing is the progressive freezing of the moments of superpara-

magnetic clusters. In this thesis, the author reports the experimental results

and the quantitative analysis of the susceptibility and the magnetization of
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ferromagnetic fine particles with special emphasis on behavior of a “non-

linear susceptibility χ2.” In order to compare with dilute spin-glass alloys

(e.g ., Au-Fe), the author has selected a Cu-Co alloy as a sample. Copper al-

loys containing a few percent cobalt have been well known to form spherical

precipitates of fcc cobalt dispersed in a matrix of almost pure copper, and

have been regarded as one of the typical superparamagnetic materials.8—10)

The author also measured susceptibilities and magnetization of a typical

spin-glass Au-Fe alloy, and compared the results of Cu-Co with that of

Au-Fe. From detailed susceptibilities and magnetization measurements and

data analysis, the author concluded that the origin of the magnetic prop-

erties of superparamagnetic fine particles and spin glasses is very different,

though some magnetic properties of fine particles are similar those of spin

glasses.

This thesis is organized as follows. In Section 2, the author reviews the

earlier experimental results of typical spin glasses and fine particle systems,

and compare the magnetic properties of fine particle systems with those of

spin glasses. The sample preparation and the experimental methods are

described in Section 3. The experimental results are reported in Section

4. The quantitative analysis of the experimental data has been performed

based on the superparamagnetic blocking model. The methods of the analy-

sis are explained in Section 5, and the results of the analysis are discussed

in Section 6. Conclusion is given in Section 7.
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Section 2

Magnetic Properties of Spin Glass and Fine

Particles

Typical spin glasses such as Au-Fe or Cu-Mn exhibit following charac-

teristic properties:

(A) The low field ac susceptibility shows a sharp cusp at the freezing

temperature Tg (Fig. 2.1(a): from Cannella and Mydosh, 1972).3) In

large fields the cusp in the ac susceptibility of spin glasses is rounded

off.

(B) The freezing temperature Tg shifts to higher with increasing the mea-

suring frequency (Fig. 2.2(a): from Mulder et al ., 1981).11)

(C) The magnetic contribution to the specific heat exhibits no sharp

anomaly at Tg but a broad maximum well above Tg (Figs. 2.3(a) and

(b): from Wenger and Keesom, 1976).12)

(D) The dc magnetization (or dc susceptibility) below Tg depends strongly

on the way the experiment is performed. The zero-field-cooled mag-

netization (ZFCM) has a cusp at Tg when the sample is cooled above

Tg in the absence of a magnetic field and thereafter the dc magnetic

field H is applied. On the other hand, the field-cooled magnetization

(FCM) below Tg is larger than ZFCM and is nearly independent of

temperature when the sample is cooled above Tg in the dc magnetic

field (Fig. 2.4(a): from Nagata et al ., 1979).13)

(E) The dc magnetization below Tg relaxes rather slowly (sometimes over

hours). For example, the isothermal remanent magnetization, IRM(t),
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which is obtained after suppressing the dc magnetic field H applied at

a given temperature T < Tg, decays logarithmically (IRM(t)=M0 −

S ln(t), where M0 and S are constants) (Fig. 2.5(a): from Holtzberg

et al ., 1977).14)

(F) Mössbauer spectra splits roughly at Tg (Fig. 2.6(a): from Violet and

Borg, 1966),15) thereby suggesting the formation of static or quasi-

static internal fields below Tg due to frozen-in spins.

(G) Spin glasses have no conventional long-range magnetic order (of ferro-

magnetic or antiferromagnetic type).

The properties of (A) and (F) suggest that the spin-glass freezing is a

cooperative phenomenon of the spins (i .e., it is the phase transition), but

the properties (B) and (C) suggest that this freezing is a progressive freezing

of the spins or cluster moments.

On the other hand, it has been reported that many fine-particle systems

exhibit following spin-glass-like properties:

(a) The low field ac susceptibility has a spin-glass-like maximum at low

temperature (Fig. 2.1(b): from Gittleman et al ., 1974).16)

(b) The temperature of the peak in the ac susceptibility shifts to higher

with increasing the measuring frequency (Fig. 2.2(b): from Dormann

et al ., 1983).17)

(c) The specific heat exhibits no sharp anomaly at low temperatures.

(Fig. 2.3(c): from Tournier et al ., 1962).18)

(d) The dc magnetization (or dc susceptibility) at low temperatures ex-

hibits spin-glass-like irreversible behavior; the zero-field-cooled mag-

netization (ZFCM) has a maximum and field-cooled magnetization
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is considerably larger than ZFCM at low temperatures (Fig. 2.4(b):

from El-Hilo and O’Grady, 1990).19)

(e) The dc magnetization at low temperatures relaxes rather slowly. For

example, the isothermal remanent magnetization decays logarithmi-

cally (Fig. 2.5(b): from El-Hilo et al ., 1991).20)

(f) Mössbauer spectra splits at low temperatures (Fig. 2.6(b): from Koch

et al ., 1986).21)

(g) In general, fine-particle systems also have no long-range magnetic or-

der.

These properties of the fine-particle systems are very similar to those of

the typical spin glasses.

It should be emphasized that in spin glasses, the nonlinear susceptibility

χ2 can show the characteristic critical behavior. The magnetization M is

expanded with respect to an applied magnetic field H in the vicinity of a

spin-glass transition temperature Tg as

M = χ0H + χ2H
3 + χ4H

5 + · · · , (2.1)

where χ0 is the linear susceptibility, and χ2, χ4, · · · are the nonlinear suscep-

tibilities. According to the mean field theory, χ2 diverges negatively at Tg

because the spin-glass order parameter susceptibility is not the linear suscep-

tibility χ0 but the nonlinear susceptibility χ2 (see, Appendix A).
22—24) Since

the first measurement of χ2 in the spin glass,
25) the divergent behavior of χ2

has been observed for many spin-glass materials; e.g ., (Ti1−xVx)2O3,25, 26)

Au-Fe (Figs. 2.7(a) and (b)),27—29) Cu-Mn30) and Ag-Mn.31) These results

are strongly support that the spin-glass freezing is the phase transition.
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On the other hand, the nonlinear susceptibility for fine-particle systems

has been rarely studied. Fiorani et al .32—34) reported that χ2 of an Fe-Al2O3

granular thin film does not show critical behavior (Fig. 2.7(c)). However,

their data are available only above the temperature where χ0 exhibits a

maximum, because they obtained χ2 from dc magnetization data. Direct

measurements of χ2 of fine particles over a wide temperature range are

required to clarify the difference between the spin glass and the fine-particle

system.
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Section 3

Experimental Methods

3.1 Samples

The author prepared Cu97Co3 and Au96Fe4 alloys to be used as samples.

The sample Cu97Co3 alloy was prepared as follows. Raw materials of copper

(99.99 %) and cobalt (99.9 %) in a quartz glass crucible were melted in an

electric furnace under argon atmosphere. The molten alloy was sucked into

quartz tube and rapidly solidified into a rod by quenching in ice water.

The quenched rod was cut into small pieces which were used as samples of

Cu97Co3. The Cu97Co3 sample had the dimensions of 15.7×1.8×0.57 mm3

and the weight of 0.143 g.

The sample Au96Fe4 alloy was prepared as follows. Gold (99.99 %) and

iron (99.999 %) were melted in an arc furnace turning upside down for

several times under argon atmosphere to obtain homogeneous alloy. The

obtained alloy was cut into small pieces which were used as samples of

Au96Fe4. The Au96Fe4 sample had the dimensions of 10.2× 2.7× 2.6 mm3

and the weight of 1.51 g. Then the Au96Fe4 sample was homogenized by

annealing at 900 ◦C for 2 days in vacuum followed by quenching in ice water.

Figure 3.1 shows the X-ray diffraction patterns of the Cu97Co3 and

Au96Fe4 alloys. The Cu97Co3 alloy has the fcc structure and no peak cor-

responding to fcc or hcp cobalt precipitates has been detected. The lattice

constant for Cu97Co3 is 3.609± 0.005 A which is slightly smaller than that

of 3.615 A for pure fcc copper. This result suggests that cobalt atoms ap-

preciably dissolved in the copper matrix. The Au96Fe4 alloy also has the fcc
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3.2 Linear and nonlinear susceptibilities

The ac susceptibilities were measured with a Corson’s type mutual in-

ductance bridge.35) When the magnetization M has inversion symmetry

concerned with the change in the sign of magnetic field H, then M is ex-

pressed as the odd power series of H for a demagnetizing state as36)

M = χ0H + χ2H
3 + χ4H

5 + · · · , (3.1)

where H is an applied field, χ0 is the linear susceptibility, χ2, χ4, · · · are

the nonlinear susceptibilities. When an ac field, H = h0 cosωt, is applied,

the nonlinear ac magnetic response, m(t), contains the components with

various frequencies, which consist of in-phase and out-of-phase components

as mn = m
0
n − im

00
n. Thus the magnetization m(t) is given by

m(t) =
∞X
n=0

[m
0
2n cos(2n+ 1)ωt−m

00
2n sin(2n+ 1)ωt ], (3.2)

where

m
0
0 = χ

0
0h0 +

3

4
χ
0
2h
3
0 + · · · , (3.3)

m
00
0 = χ

00
0h0 +

3

4
χ
00
2h

3
0 + · · · , (3.4)

m
0
2 =

1

4
χ
0
2h
3
0 +

5

16
χ
0
4h
5
0 + · · · , (3.5)

m
00
2 =

1

4
χ
00
2h

3
0 +

5

16
χ
00
4h

5
0 + · · · , (3.6)

... .

An induced voltage in a secondary coil by the sample is given as

E = −L?dm(t)
dt

= ωL?[m
0
0 sinωt+m

00
0 cosωt

+3(m
0
2 sin 3ωt+m

00
2 cos 3ωt) + · · · ]
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= ωh0L
?[χt

0
0 sinωt+ χt

00
0 cosωt

+
3

4
h20(χ

t0
2 sin 3ωt+ χt

00
2 cos 3ωt) + · · · ] , (3.7)

where L? = L/n, L is the mutual inductance between a secondary coil

and an equivalent solenoid37) that has the same size of the sample and

proportional to n, which is the number of turns in the equivalent solenoid

par unit length, and

χt
0
0 =

m
0
0

h0
= χ

0
0 +

3

4
χ
0
2h
2
0 + · · · , (3.8)

χt
00
0 =

m
00
0

h0
= χ

00
0 +

3

4
χ
00
2h

2
0 + · · · , (3.9)

3

4
χt

0
2 h

2
0 =

3m
0
2

h0
=
3

4
χ
0
2h
2
0 +

15

16
χ
0
4h
4
0 + · · · , (3.10)

3

4
χt

00
2 h

2
0 =

3m
00
2

h0
=
3

4
χ
00
2h

2
0 +

15

16
χ
00
4h

4
0 + · · · , (3.11)

... .

When h0 is small, we can put here χ
0
0 ≈ χt

0
0 , χ

00
0 ≈ χt

00
0 , χ

0
2 ≈ χt

0
2 , χ

00
2 ≈

χt
00
2 , · · ·. These linear (χ

0
0, χ

00
0) and nonlinear (χ

0
2, χ

00
2 , · · ·) susceptibilities

could be measured simultaneously by detecting ω, 3ω, · · · components using

several two-phase lock-in amplifiers. The magnitude of susceptibilities were

calibrated by numerical calculations of the mutual inductance L?.37)

Figure 3.2 shows the schematic diagram of the measuring system for ac

susceptibilities. Figures 3.3 and 3.4 show the circuit diagram of the mutual

inductance bridge. During operation, an ac exciting voltage is applied from

the function synthesizer (NF 1925) to the input jack J1 of the bridge, and

the bridge supplies an ac current to the primary coil. The output signal of

the secondary coil, which is delivered at the output jack J3 of the bridge, is

detected by the two lock-in amplifiers (NF 5610B). The bridge also provides
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a monitor signal for the primary current at the monitor jack J2. The digital

frequency multiplier (which was made by H. Arisawa) makes two reference

signals from the monitor signal for the lock-in amplifiers;38) one (the ref-

erence signal for χ0) has a frequency of ν (equals to that of the monitor

signal) and its phase is delayed for π/2 that of the monitor signal, and the

other (the reference signal for χ2) has a frequency of 3ν and in-phase with

the reference signal for χ0.

Figure 3.5 schematically shows the coil configuration and the sample

holder. The measuring coils were carefully designed and wound onto the

glass bobbin using folmal covered copper wire (0.1 φ for primary coil and

0.07 φ for secondary coil) with collodion to hold the winding in place. The

dimensions and the number of turns in the coils are shown in Table 3.1. The

sample holder was made of thin copper plate whose thickness was 0.3 mm.

It was mounted on a copper tube which could be moved up- and downward.

The sample was set on the sample holder using GE7031 varnish. The ac

field was applied parallel to the longest dimension of the samples. After

cooling to 4.2 K by putting helium exchange gas into a vacuum space, the

temperature range up to room temperature was obtained by pumping the

vacuum space with a diffusion pump and by heating with the heater wound

onto the copper tube. The temperature was measured with a silicon-diode

thermometer (PALM BEACH STD-108sp S/N 807) attached on the sample

holder. This thermometer was calibrated with the standard silicon-diode

thermometer (Lake Shore DT-470-LR-12 S/N D65600) in the temperature

range between 4.2 K to 300 K.
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Table 3.1. Dimensions and the number of turns in the measuring coils.

Diameters

Coil Length Inner Outer Number of turns

(mm) (mm) (mm)

Primary 135.0 9.10 9.85 6488 (4 layers)

Secondary 35.0a) 9.95 11.35 4206a) (10 layers)

a) These values for each half of the secondary coil.
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3.3 Dc magnetization

The dc magnetization was measured with an rf superconducting quan-

tum interference device (rf-SQUID: QUANTUM DESIGN MPMS2). The

temperature dependence of the magnetization was measured as follows.

First, the sample were cooled in a zero field from above 200 K. Then a mag-

netic field was applied and zero-field-cooled magnetization (ZFCM) was

measured with increasing temperature from 6 K to 100 K. Subsequently,

field-cooled-magnetization (FCM) was measured with decreasing tempera-

ture from 100 K to 6 K. The magnetization versus magnetic field isotherms

were also measured in a field up to 10 kOe and in a temperature range from

6 to 300 K after zero-field cooling from above 200 K. The magnetic field

was applied parallel to the longest dimension of the samples by a super-

conducting magnet operating in the persistent mode. The magnitude of

magnetization was calibrated with pure palladium and pure nickel.
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Section 4

Experimental Results

4.1 Linear and nonlinear susceptibilities

4.1.1 Temperature dependence

Figure 4.1 shows a typical temperature dependence of the in-phase linear

susceptibility χ
0
0 and the in-phase nonlinear susceptibility χ

0
2 of Cu97Co3

alloy measured at the frequency ν = 80 Hz with the ac field amplitude h0 =

30 Oe. When the temperature increases, χ
0
0 increases at lower temperatures,

exhibiting a round maximum around 25 K, and then decreases gradually at

higher temperatures. On the other hand, χ
0
2 is nearly zero at 4.2K. With

increasing temperature χ
0
2 decreases first, exhibiting a minimum around 28

K, and then gradually approaches zero at higher temperatures. Figure 4.2

shows a example of the out-of-phase susceptibilities of Cu97Co3 alloy. The

out-of-phase linear susceptibility χ
00
0 exhibits a maximum around 17 K and

becomes zero around 150 K. On the other hand, with increasing temperature

the out-of-phase nonlinear susceptibility χ
00
2 exhibits a minimum around 22

K and becomes zero around 150 K.

Figure 4.3 shows (χ
0
0 − χc)

−1 of Cu97Co3 as a function of temperature.

The constant term χc (= (1.1 ± 0.2) × 10−5 emu/cm3) of χ
0
0 was obtained

by χ
0
0 versus T

−1 plot (Fig. 4.4). The paramagnetic Curie temperature of

Cu97Co3 was determined to be Θ = −0.2± 0.2 K; χ00 obeys approximately

the Curie law above 100 K. The effective number of Bohr magnetrons per

cobalt atom is estimated as peff = 65.6 ± 0.5. This value is very large

and indicates the existence of precipitated ferromagnetic particles in the
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Cu97Co3 alloy.

4.1.2 Frequency dependence

Figures 4.5 and 4.6 show the frequency dependence of the susceptibilities

for Cu97Co3 alloy at h0=30 Oe. With increasing the frequency all the peaks

in the susceptibilities move to higher temperature. For χ
0
0, χ

0
2 and χ

00
2 , the

height of the peaks decreases with increasing the frequency. On the other

hand, the height of the positive peak in χ
00
0 increases with increasing the

frequency.

4.1.3 Comparison with Au-Fe alloy

In order to compare the results of Cu97Co3 and of Au96Fe4 alloy, the

susceptibilities of both these alloys are shown in Figs. 4.7 and 4.8 as a func-

tion of temperature. The in-phase linear susceptibility χ
0
0 of Au96Fe4 has a

clear cusp at a well-defined transition temperature Tg (= 20.3 K), and χ
0
2

has a very sharp negative peak at Tg. The out-of-phase linear susceptibility

χ
00
0 of Au96Fe4 has a sharp positive peak just below Tg, and χ

00
2 , as well as

χ
0
2, has a very sharp negative peak at Tg. The present result for Au96Fe4

also reproduces the features reported by Taniguchi and Miyako.29)

Figure 4.9 shows (χ
0
0 − χc)

−1 of Au96Fe4 as a function of temperature,

where χc = (−8.7 ± 0.5) × 10−5 emu/cm3 (Fig. 4.10). The paramagnetic

Curie temperature of Au96Fe4 was determined to be Θ = −1.5± 0.5 K; χ00
obeys approximately the Curie law above 50 K. The effective number of

Bohr magnetrons per iron atom is estimated as peff = 6.8± 0.2.

The susceptibilities of the Cu97Co3 alloy exhibit the spin-glass-like be-
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havior; χ
0
0 and χ

00
0 have a maximum, and χ

0
2 and χ

00
2 have a negative peak

at low temperature. In particular, the temperature dependence of χ
0
0 in

Cu97Co3 is similar to that of the spin glass in Au-Fe alloys measured in

large fields,3) though χ
0
0 of Cu97Co3 is two orders of magnitude larger than

that of Au96Fe4. Furthermore, both χ
0
0 of Cu97Co3 and of Au96Fe4 obey

approximately the Curie law at high temperatures. However, the negative

peak in χ
0
2 of Cu97Co3 is very broad compared with that of the spin-glass

Au96Fe4 alloy. In addition, χ
0
2 of Cu97Co3 does not return to zero even at

280 K far from the negative peak while that of Au96Fe4 shows a sharp peak

only in the vicinity of Tg: Tg ± 1 K. It seems that the temperature depen-

dence of χ
0
2 of Cu97Co3 alloy is qualitatively different from that of Au96Fe4

alloy.

It is well known that in spin glasses, the temperature dependence of χ
0
2

for temperatures just above Tg is dominated by the following power law

divergence:22, 24)

χ
0
2 = Γ t−γ , (4.1)

t ≡ T − Tg
Tg

, (4.2)

where t is the reduced temperature, γ is the critical exponent, Γ is the

critical amplitude. In Au-Fe alloys, the values of γ between 1 to 2 have been

reported.27—29) Figure 4.11 shows log-log plot of−3
4
χ
0
2h
2
0 versus t for Au96Fe4.

The value of Tg (= 20.36 K) were determined from the peak temperature

of χ
0
2. The nonlinear susceptibility χ

0
2 of Au96Fe4 well obeys the power law

divergence (eq. (4.1)) just above Tg with a value of γ = 1.39± 0.20.

Figure 4.12 shows the log-log plots of −3
4
χ
0
2h
2
0 versus temperature for

Cu97Co3. Figure 4.12 indicates that over the high temperature range above
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100 K, χ2 of Cu97Co3 can be expressed well as power law of temperature:

χ
0
2 = −CT−n, (4.3)

where C is a positive constant. From the slope of the straight line in Fig.

4.12, the author obtained n = 3.17. The values of n are nearly independent

of the ac field amplitude and of the frequency in the present measuring

conditions. Averaging all these values the author obtained n = 3.15± 0.20;

χ
0
2 of Cu97Co3 is nearly proportional to T

−3 above 100 K.

It is clear that the temperature dependence of χ
0
2 of Cu97Co3 alloy is

very different from that of Au96Fe4 alloy; χ
0
2 in the spin-glass Au96Fe4 alloy

shows divergent behavior, while χ2 in Cu97Co3 alloy does not. Furthermore,

χ
0
2 of Cu97Co3 alloy is nearly proportional to T

−3 at high temperatures.
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4.2 Field-cooled and zero-field-cooled magnetization

A typical temperature dependence of FCM/H (M/H in a field-cooled

process) and ZFCM/H (M/H in a zero-field-cooled process) of Cu97Co3 and

Au96Fe4 is shown in Fig. 4.13. The zero-field-cooled magnetization ZFCM

of Cu97Co3 exhibits a spin-glass-like maximum at Tp (≈ 18 K) and that of

Au96Fe4 has a cusp-like peak at Tg (≈ 20 K). The field-cooled magnetization

FCM of Cu97Co3 is considerably larger than ZFCM at low temperatures.

The magnetic field dependence of ZFCM/H and FCM/H for Cu97Co3 and

Au96Fe4 is shown in Figs. 4.14 and 4.15, respectively. With increasing the

magnetic field, ZFCM/H and FCM/H of Cu97Co3 considerably decrease

and Tp shifts to lower, from 18 K for H = 30 Oe to 10 K for H = 300 Oe.

On the other hand, ZFCM/H of Au96Fe4 is slightly decreases only near Tg.

The present results for Au96Fe4 also reproduces the features reported by

Chamberlin et al . in spin-glass Ag-Mn alloys.39, 40)

The magnetization of the Cu97Co3 alloy exhibits the spin-glass-like be-

havior. However, there are two significant different points from that of the

spin-glass Au96Fe4 alloy to be noted:

(1) The difference between FCM and ZFCM of Cu97Co3 obviously exists

far above Tp while that of Au96Fe4 exists only below Tg.

(2) The field-cooled magnetization FCM of Cu97Co3 increases monoto-

nously with decreasing temperature. On the other hand, FCM of

Au96Fe4 is nearly temperature independent at low temperatures with

a constant value of ≈ 0.9 ZFCMmax, where ZFCMmax is the maximum

value of ZFCM.
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4.3 Magnetization curve

The magnetization curves of Cu97Co3 alloy at various temperatures are

shown in Figs. 4.16—4.18. All the magnetization curves clearly show a ten-

dency to saturate. The magnetization of Cu97Co3 shows no hysteresis above

50 K. Figure 4.19 shows the magnetization curves of Cu97Co3 as a function

of H/T . The curves above 100 K coincide with one another. These results

of the magnetization curves show that the Cu97Co3 alloy exhibits super-

paramagnetic behavior at high temperatures.

Figures 4.20—4.22 shows the magnetization curves of Au96Fe4 alloy at

various temperatures. All the magnetization curves of Au96Fe4 do not show

a tendency to saturate in contrast with those of Cu97Co3. Above 50 K, the

magnetization of Au96Fe4 maintains a linear relationship with the magnetic

field up to 10 kOe. The magnetization of Au96Fe4 shows no hysteresis above

20 K. Figure 4.23 shows the magnetization curves of Au96Fe4 as a function

of H/T . Since the value of the temperature-independent susceptibility χc

(= −8.7 × 10−5 emu/cm3) is large, the author plotted M − χcH against

H/T . The M − χcH curves above 20 K coincide with one another.
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Section 5

Data Analysis

5.1 Superparamagnetic blocking model

5.1.1 Assumption

As described in Section 4.1.3, the temperature dependence of the non-

linear susceptibility χ
0
2 of Cu97Co3 alloy is qualitatively different from that

of spin-glass Au96Fe4 alloy; χ
0
2 of Cu97Co3 does not diverge at any tem-

perature and is proportional to T−3 at high temperatures, while that of

Au96Fe4 diverges at the transition temperature Tg. This result indicates

that the origin of the magnetic properties of Cu97Co3 and Au96Fe4 is differ-

ent, though the behavior of χ0, ZFCM and FCM of Cu97Co3 is similar those

of Au96Fe4. In this section, to study the origin of the magnetic properties

of fine particles, the author analyzes the results of Cu97Co3 alloy based on

the superparamagnetic blocking model with special emphasis on χ0 and χ2.

For simplicity, the author has assumed as follows:

(1) There are no interactions between the cobalt particles.

(2) The particles consist of a single magnetic domain.

(3) The saturation magnetization Ms of the particle is independent of

temperature because the Curie temperature of each cobalt particle is

very high (≈ 1400 K).

(4) The magnetic anisotropy of the particles is uniaxial and all particles

have a same uniaxial anisotropy constant Ku.

(5) The anisotropy axes of the particles are randomly oriented.

57



5.1.2 Linear and nonlinear susceptibilities

Amagnetic response of noninteracting single-domain particles will follow

the Néel41, 42) relaxation process characterized by a relaxation time given by

τ = τ0 exp
µ
∆Ea
kBT

¶
, (5.1)

where τ0 is the order of 10
−10 sec,41—44) ∆Ea (=KuV , where V is the parti-

cle volume) is the height of the energy barrier due to anisotropy, kB is the

Boltzmann constant and T is the absolute temperature. It is well known

that noninteracting single-domain particles exhibit superparamagnetic be-

havior at high temperatures.45) On the other hand, at low temperatures,

the particle moment cannot achieve thermal equilibrium in the time of a

measurement. Then the particle moment is blocked in the direction of the

anisotropy axis. The blocking temperature Tb at which the blocking of

the moment occurs is given by setting τ equals to the measurement time

τm (= ω−1 is chosen for a typical ac measurement, where ω = 2πν is the

angular frequency) as16)

Tb =
KuV

kB ln
µ
τm
τ0

¶ . (5.2)

1. Static susceptibilities

Above Tb, if all particles have a same volume V , then the total magne-

tization M sp
V for particles is given by45)

M sp
V = εMsL

µ
MsV H

kBT

¶

= εMs

"
MsV H

3kBT
− 1

45

µ
MsV H

kBT

¶3
+ · · ·

#
, (5.3)

where

L(x) = coth x− 1
x

(5.4)
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is the Langevin function, ε is the volume fraction occupied by ferromag-

netic particles. The superparamagnetic linear (χspV 0) and nonlinear (χ
sp
V 2)

susceptibilities are given by the first and the second terms of eq. (5.3) as

χspV 0 =
εM2

s V

3kBT
, (5.5)

χspV 2 = −
εMs

45

µ
MsV

kBT

¶3
, (5.6)

respectively. The linear susceptibility χspV 0 obeys the Curie law, and χ
sp
V 2 is

negative and proportional to T−3.

Below Tb, the linear susceptibility χblV 0 in the blocked state is given

by6, 46)

χblV 0 =
εM2

s

3Ku

. (5.7)

It should be noted that the value of χblV 0 is very small:

χblV 0
χspV 0(Tb)

= ln
µ
τm
τ0

¶
≈ 1

17
, at τ0 = 10

−10 sec, ν = 80 Hz. (5.8)

The author has neglected the nonlinear susceptibility χblV 2 in this analysis.

The broken lines in Fig. 5.1 shows schematic behavior of χV 0 and χV 2 as

a function of T/Tb. It must be noted that χ2 for fine particles does not

diverge at any temperature.

In general, there is a distribution in the volumes of precipitated particles.

Then the total susceptibilities are given as

χ0 =
εM 2

s

3kBT

Z Vm(T )

0
V f(V ) dV +

εM2
s

3Ku

Z ∞
Vm(T )

f(V ) dV, (5.9)

χ2 = −
εMs

45

µ
Ms

kBT

¶3 Z Vm(T )

0
V 3f(V ) dV, (5.10)

where f(V ) the distribution function of particle volume and

Vm(T ) =
kBT

Ku

ln
µ
τm
τ0

¶
(5.11)
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is the maximum particle volume exhibiting the superparamagnetic behavior

at the temperature T .

2. Complex susceptibilities

In order to calculate the complex susceptibilities χ?V n (= χ
0
V n − iχ

00
V n),

the author used following formations. The temperature dependence of the

complex linear susceptibility χ?V 0 (= χ
0
V 0 − iχ

00
V 0) for particles is given by

Gittleman et al .16) as

χ?V 0 =
χspV 0 + iωτχ

bl
V 0

1 + iωτ
, (5.12)

whose in-phase and out-of-phase components are given by

χ
0
V 0 =

χspV 0 + ω2τ 2χblV 0
1 + ω2τ 2

, (5.13)

χ
00
V 0 = ωτ

χspV 0 − χblV 0
1 + ω2τ 2

, (5.14)

respectively. Recently, Kimura and Hayakawa47) calculated the nonlinear

dielectric relaxation spectra on the basis of a simple model for freely ro-

tatable dipoles. Since superparamagnetic particles are regraded as freely

rotatable dipoles, this model can be applied to superparamagnetic parti-

cles. In this model, the complex nonlinear susceptibility χ?V 2 (= χ
0
V 2− iχ

00
V 2)

given as47)

χ?V 2 =
χspV 2

(1 + iωτ ) (1 + 3iωτ)
µ
1 +

2

3
iωτ

¶ , (5.15)

whose in-phase and out-of-phase components are given by

χ
0
V 2 =

χspV 2

µ
1− 17

3
ω2τ 2

¶
(1 + ω2τ 2) (1 + 9ω2τ 2)

µ
1 +

4

9
ω2τ 2

¶ , (5.16)

χ
00
V 2 =

ωτχspV 2

µ
14

3
− 2ω2τ 2

¶
(1 + ω2τ 2) (1 + 9ω2τ 2)

µ
1 +

4

9
ω2τ 2

¶ , (5.17)
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respectively.

Figure 5.1 shows schematic behavior of χ
0
V 0, χ

0
V 2 (solid lines), χ

00
V 0, χ

00
V 2

(dotted lines) as a function of T/Tb. When temperature is much higher

than Tb, then χ
0
V n equals χ

sp
V n (n = 0, 2); χ

0
V 0 obeys the Curie law, χ

0
V 2 is

negative and proportional to T−3. Below Tb, then χ
0
V 0 and χ

0
V 2 nearly equal

to χblV 0 and zero, respectively. On the other hand, χ
00
V 0 and χ

00
V 2 are observed

in the vicinity of Tb.

When the particle volume has a distribution, the total complex suscep-

tibilities given as

χ?n =
Z ∞
0

χ?V nf(V ) dV (n = 0, 2). (5.18)

5.1.3 Field-cooled and zero-field-cooled magnetization

In order to calculate the magnetization in rather large magnetic fields,

the author used the model as follows. The energy barrier ∆Ea in a dc

magnetic field H is given by43, 48)

∆Ea = KuV
µ
1− H

HK

¶2
, (5.19)

where

HK =
2Ku

Ms

(5.20)

is the anisotropy field. The blocking temperature Tb in a dc magnetic field

is given as48)

Tb(H) =
KuV

kB ln
µ
τm
τ0

¶ µ1− H

HK

¶2
, (5.21)

where τm = 100 sec is usually chosen for a typical dc measurement.

Above Tb, if all particles have a same volume V , the magnetization M
sp
V

of superparamagnetic particles is given by the Langevin function as eq.
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(5.3). Below Tb, the magnetization ZFCM
bl
V and FCM

bl
V are given by

6, 46, 48)

ZFCMbl
V =

εM2
sH

3Ku

, (5.22)

FCMbl
V =M

sp
V (Tb) = εMsL

Ã
MsV H

kBTb(H)

!
. (5.23)

It should be noted that ZFCMbl
V is much smaller than M

sp
V (Tb) (= FCM

bl
V )

as eq. (5.8). When the particle volume has a distribution, the total magne-

tization given as

ZFCM =
Z Vm(T )

0
M sp
V f(V )dV +

Z ∞
Vm(T )

ZFCMbl
V f(V )dV, (5.24)

FCM =
Z Vm(T )

0
M sp
V f(V )dV +

Z ∞
Vm(T )

FCMbl
V f(V )dV, (5.25)

where

Vm(T ) =
kBT

Ku

µ
1− H

HK

¶2 lnµτmτ0
¶
. (5.26)

Figure 5.2 shows schematic behavior of ZFCMV (solid lines) and FCMV

(dotted lines) as a function of T/Tb(H = 0) at various magnetic fields.

5.1.4 Magnetization curve at high temperatures

It is difficult to calculate the magnetization curves for ferromagnetic fine

particles below Tb. Here, the author considers the magnetization curves

only at high temperatures where all particles exhibit superparamagnetic

behavior. As described in Section 5.1.2, if there is no distribution in the

volumes of particles, then the total magnetization M sp
V for particles is given

by the Langevin function as eq. (5.3) above Tb. When the particle volume

has a distribution, the total magnetization M sp at high temperatures given

by

M sp = εMs

Z ∞
0
L
µ
MsV H

kBT

¶
f(V ) dV. (5.27)
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5.2 Analysis for Cu-Co alloy

5.2.1 Characteristic relaxation time

From eq. (5.2), the frequency dependence of blocking temperature Tb is

given as

ln(τm) = ln(τ0) +
KuV

kBTb
. (5.28)

Since the temperature Tp where the susceptibilities exhibit a peak is propor-

tional to the mean blocking temperature hTbi,16) the frequency dependence

of Tp is the same as that of Tb. Thus we are able to determine the char-

acteristic relaxation time τ0 from the frequency dependence of Tp. Figure

5.3 shows log(τm) versus T
−1
p plot for each susceptibility component. This

plot gives the straight lines that lead to an intercept to the log(τm) axis

equal to log(τ0). From Fig. 5.3, the author estimated τ0 = 1.6× 10−14 sec.

This value is rather smaller than the theoretical value (the order of 10−10

sec).41—44) Dormann et al .49, 50) reported that the relaxation time τ of iron

particles dispersed in an amorphous Al2O3 matrix does not obey eq. (5.1)

due to dipole interaction between particles. However, in the low frequency

as the present experiments, τ can be approximated using eq. (5.1) though

the value of τ0 is smaller than the theoretical value.

5.2.2 Volume distribution function

Since χ
0
V 0 falls abruptly near Tb with decreasing temperature, it can be

regarded as

χ
0
V 0 =

⎧⎪⎪⎨⎪⎪⎩
χspV 0 for T ≥ Tb
0 for T < Tb.

(5.29)
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Then the total linear susceptibility χ
0
0 is given by

χ
0
0 =

εM2
s hV i

3kBT

Z Vm(T )/hV i

0
Vrf(Vr) dVr, (5.30)

where hV i is the mean volume of particles, Vr = V/hV i is the reduced vol-

ume, f(Vr) is the distribution function of Vr. Since the blocking temperature

Tb is proportional to the particle volume, eq. (5.30) can be written as

3kB
a2εM2

s hV i
χ
0
0T =

Z T

0
Tbf(aTb) dTb, (5.31)

where

Vr = aTb (5.32)

and

a =
kB

KuhV i
ln
µ
τm
τ0

¶
. (5.33)

Equation (5.31) can be inverted to give6, 51)

3kB
a2εM 2

s hV i
d

dT
(χ

0
0T ) = Tbf(aTb) =

Vr
a
f(Vr). (5.34)

Therefore f(Vr) is given as

Vrf(Vr) =
3Ku

εM2
s ln

µ
τm
τ0

¶ d

dT
(χ

0
0T ). (5.35)

Figure 5.4 shows d(χ
0
0T )/dT as a function of temperature. The solid curve

in Fig. 5.4 shows Vrf(Vr) as a function of Tb, which was calculated using a

log-normal distribution function (Fig. 5.5)

f(Vr) =
1√
2πσVr

exp

"
−(lnVr)

2

2σ2

#
. (5.36)

The blocking temperature Tb is given by eq. (5.2) as

Tb = VrhTbi, (5.37)
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where

hTbi =
KuhV i

kB ln
µ
τm
τ0

¶ (5.38)

is the mean blocking temperature. The author was able to fit Vrf(Vr) to

d(χ
0
0T )/dT very well using the two adjustable parameters: hTbi (= 14.0 K)

and the standard deviation σ (= 0.72).

5.2.3 Mean particle volume and volume fraction

Above 100 K, the measured χ
0
0 and χ

0
2 are proportional to T

−1 and

T−3, respectively. This means that almost all particles exhibit superpara-

magnetic behavior above 100 K. In this temperature range, in-phase total

susceptibilities χht
0

0 and χht
0

2 are given by

χht
0

0 =
εM 2

s hV i
3kBT

Z ∞
0
Vrf(Vr) dVr, (5.39)

χht
0

2 = −εMs

45

Ã
MshV i
kBT

!3 Z ∞
0
V 3r f(Vr) dVr. (5.40)

From eqs. (5.39) and (5.40), the mean volume hV i can be written by

hV i = kBT

Ms

vuuuuut−15χht
0

2

χht
0

0

Z ∞
0
Vrf(Vr) dVrZ ∞

0
V 3r f(Vr) dVr

. (5.41)

If the particle volume distribution is given as the log-normal distribution

function (eq. (5.36)), then

Z ∞
0
V nr f(Vr) dVr = exp

Ã
n2σ2

2

!
, (5.42)

thus

hV i = kBT

Ms exp(2σ2)

vuut−15χht02
χht

0
0

. (5.43)

67



The volume fraction ε of particles can be evaluated from the experimental

value of χ
0
0 or χ

0
2 at high temperatures using eq. (5.39) or eq. (5.40) as

ε =
3kBTχ

ht0
0

M2
s hV i

Z ∞
0
Vrf(Vr) dVr

= − 45k3BT
3χht

0
2

M4
s hV i3

Z ∞
0
V 3r f(Vr) dVr

=
3kBTχ

ht0
0

M2
s hV i

exp

Ã
−σ

2

2

!
= −45k

3
BT

3χht
0

2

M 4
s hV i3

exp
µ
−9
2
σ2
¶
. (5.44)

From the experimental data of the susceptibilities above 100 K and the

saturation magnetization Ms (= 1.46 kG)
52) for bulk fcc cobalt, the author

obtained hV i = 5.6× 10−20 cm3 and ε = 0.60 %. The mean particle diam-

eter has been determined to be 47.5 A assuming the particle shape is sphere.

The value of ε indicates that atomic percentage of the cobalt atoms of the

precipitated fcc cobalt particles in the Cu97Co3 is about 20 %. This result

is also supported by the value of the lattice constant (see, Section 3.1). Iso-

lated cobalt atoms probably exhibit constant paramagnetism.53) The value

of the temperature-independent susceptibility of the matrix, which is con-

stituted of copper and isolated cobalt atoms, is estimated to be 0.72× 10−5

emu/cm3. Here, the earlier observed data of the susceptibility per copper

atom (χCu = −9.1×10−30 emu/Cu atom)54) and the susceptibility per cobalt

atom in Cu-Co alloy (χCo = 4.0 × 10−27 emu/Co atom)53) were used. The

estimated value of the temperature-independent susceptibility is consistent

with the observed value (1.1× 10−5 emu/cm3) in Section 4.1.1.

5.2.4 Anisotropy constant

The uniaxial anisotropy constant of particles can be determined from

eq. (5.38) as

Ku =
kBhTbi
hV i ln

µ
τm
τ0

¶
. (5.45)
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From eq. (5.45), the author obtained Ku = 8.8 × 105 erg/cm3 using the

values of hV i and hTbi obtained above. Bulk fcc cobalt has a cubic

anisotropy and its anisotropy constants are K1 ≈ −1.2 × 106 erg/cm3 and

K2 ≈ K1/4.
55, 56) In this case, since the anisotropy energy barrier given

by ∆Ea ≈ |K1|V/12, the effective uniaxial anisotropy constant is given as

Ku ≈ |K1|/12 ≈ 1.0 × 105 erg/cm3. Thus the crystalline anisotropy can-

not explain the large barrier in cobalt fine particles. Similar results are

reported in some fine-particle systems.16, 49, 57) Other source of anisotropy

is, for example, shape anisotropy. If the particle shape is prolate ellipsoid,

the uniaxial shape anisotropy constant can be written as46)

Ku =
M2
s

2
(Nb −Na), (5.46)

where Na and Nb are the demagnetization factor along the longer a-axis

and the shorter b-axis of the ellipsoid, which are given by58)

Na =
4π

m2 − 1

"
m√
m2 − 1 ln(m+

√
m2 − 1 )− 1

#
, (5.47)

Nb = 2π −
Na
2
, (5.48)

where

m =
a

b
(5.49)

is the dimensional ratio. The dimensional ratio m ≈ 1.18 is required to

account for the observed value of Ku. This value of m is consistent with the

earlier observed value (m ≈ 1.3) for Cu99Co1 single crystal by small-angle

neutron scattering.59)

The obtained values of the parameters for Cu97Co3 alloy are summarized

in Table 5.1.
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Table 5.1. Summary of the obtained values of the parameters for Cu97Co3

alloy.

Characteristic relaxation time τ0 1.6× 10−14 sec

Mean particle volume hV i 5.6× 10−20 cm3

(Mean particle diameter hDi 47.5 A)

Volume distribution function f(Vr) Log-normal (eq. (5.36))

Standard deviation σ of f(Vr) 0.72

Volume fraction ε 0.60 %

Uniaxial anisotropy constant Ku 8.8× 105 erg/cm3

Saturation magnetization Ms 1.46 kGa)

a) The author used the value for bulk fcc cobalt.52)
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5.3 Analysis for Au-Fe alloy

In order to compare with the results of Cu97Co3 and of Au96Fe4 alloy,

the analysis for Au96Fe4 based on the simplified blocking model has been

performed. Figure 5.6 shows d(χ
0
0T )/dT versus T plot for Au96Fe4. The

solid curve in Fig. 5.6 shows Vrf(Vr) as a function of Tb, which was calculated

using a rectangular distribution function (Fig. 5.7)

f(Vr) =

⎧⎪⎪⎨⎪⎪⎩
1

2
for Vr ≤ 2

0 for Vr > 2.
(5.50)

Since the value of χ
00max
0 /χ

0max
0 (where χ

0max
0 and χ

00max
0 are the maximum

values of χ
0
0 and χ

00
0 , respectively) depends on the value of τ0 as Fig. 5.8, the

value of τ0 for was estimated from the value of χ
00max
0 /χ

0max
0 for Au96Fe4. The

mean particle volume hV i was determined from |χ0max2 |T 3 (where |χ0max2 | is

the maximum value of |χ02|) and χ
0
0T above 50 K (where χ

0
0 obeys the Curie

law) for Au96Fe4.

The obtained values of the parameters for Au96Fe4 are summarized in

Table 5.2.
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Table 5.2. Summary of the obtained values of the parameters for Au96Fe4

alloy.

Characteristic relaxation time τ0 1.0× 10−80 sec

Mean particle volume hV i 9.7× 10−21 cm3

(Mean particle diameter hDi 26.5 A)

Volume distribution function f(Vr) Rectangular (eq. (5.50))

Volume fraction ε 3.3× 10−2 %

Uniaxial anisotropy constant Ku 2.6× 107 erg/cm3

Saturation magnetization Ms 1.77 kGa)

a) The author used the value for bulk bcc iron.60)
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Section 6

Discussion

6.1 Linear and nonlinear susceptibilities

6.1.1 Temperature dependence

Figure 6.1 shows a representative of the calculated result of χ
0
0 and

χ
0
2 based on the superparamagnetic blocking model described in Section

5.1.2 (eq. (5.18)) using the parameters determined in Section 5.2. All the

temperature range, the calculated curve for χ
0
0 is in good agreement with

the experimental data for Cu97Co3. The temperature dependence of χ
0
2

of Cu97Co3 is also explained by the blocking model using the volume dis-

tribution function determined from χ
0
0, except for the slight difference in

the temperature at which the minimum occurs. For the out-of-phase com-

ponents of the susceptibilities, as well as the in-phase susceptibilities, the

blocking model reproduces the features of χ
00
0 and χ

00
2 of Cu97Co3 (Fig. 6.2).

In order to compare with the results of Cu97Co3 and of Au96Fe4 alloy,

the analysis for Au96Fe4 based on the simplified blocking model has been

performed. The calculated results for Au96Fe4 based on the blocking model

are shown in Figs. 6.3 and 6.4. The clear cusp in χ
0
0 of Au96Fe4 can be also

explained by the blocking model with the rectangular volume distribution

function (eq. (5.50)). However, it is clear that the blocking model cannot

explain the divergent behavior of χ
0
2 in Au96Fe4. In addition, the character-

istic relaxation time τ0 ≈ 10−80 sec is required to account for the ratio of

χ
00max
0 to χ

0max
0 . This τ0 value has no physical meaning. It is clear that the

blocking model cannot explain the divergent behavior of χ
0
2 in spin glasses;
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the origin of the divergent behavior of χ
0
2 in spin glasses is the frustrated

interaction between spins,22—24) while the broad peak of χ2 in fine-particle

systems can be explained by the summation of the nonlinear term of the

Langevin function over the particle volume distribution.

It seems that at low temperatures, calculated results for χ
0
2 and χ

00
2 de-

viate from the experimental data of Cu97Co3. The difference between the

observed and the calculated results for χ2 may be caused by the oversim-

plification of the blocking model. The causes of the difference are listed as

follows. (1) Influence of interaction between the particles: As described in

Section 5.2.1, the obtained value of τ0 is rather smaller than the theoretical

value. According to Dormann et al .,49, 50) this is due to dipole interaction

between the particles. They proposed a model which shows the height the

anisotropy energy barrier of particles is affected by the dipole interaction,

i .e., the blocking temperature is affected by the interaction. (2) Distribution

of the anisotropy constant Ku: As described in Section 5.2.4, the obtained

value of Ku cannot be explained by the crystalline anisotropy. Therefore

other source of anisotropy (e.g ., shape anisotropy) is important. This also

suggests Ku probably have a distribution. In addition, as mentioned above,

it is necessary to consider the contribution of the interaction on the height

of the anisotropy energy barrier.

To describe completely the behavior of χ0 and χ2, it is necessary to

consider the influence of the interaction between the particles and of the

distribution of Ku. However, the temperature dependence of χ2 is rather

well explained not only qualitatively but also quantitatively by the blocking

model with no interaction between the particles and the distribution of Ku.
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This result makes a contrast with that of spin glasses; the divergent behavior

of χ2 in spin glasses is described theoretically with the frustrated interaction

between spins.22—24)

6.1.2 Frequency dependence

The calculated result of the susceptibilities for Cu97Co3 at various fre-

quencies are shown in Figs. 6.5 and 6.6. For χ
0
0, χ

0
2 and χ

00
2 , the reduction

and the shift of the peaks with increasing frequency are well explained by

the superparamagnetic blocking model. On the other hand, the change of

the peak height in χ
00
0 is considerably smaller than that was observed by the

experiment. The enhancement of the observed χ
00
0 over the wide tempera-

ture range might be caused by eddy current. In this model, the inference

of the eddy current is not considered. The frequency dependence of the

susceptibilities is also well described by the simplified superparamagnetic

blocking model.
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6.2 Field-cooled and zero-field-cooled magnetization

Figure 6.7 shows the calculated result of FCM and ZFCM for Cu97Co3

based on the superparamagnetic blocking model (eqs. (5.24) and (5.25))

using the parameters determined from the susceptibilities data in Section

5.2. The calculated curves reproduce the features of the magnetization, but

there is the slight difference at low temperatures. However, as shown in

Fig. 6.8, the author was able to fit the calculated results to the experimen-

tal data of ZFCM very well using the two adjustable parameters: ε (= 0.57

%) and σ (= 0.76). It should be noted that these values close to those de-

termined from the susceptibilities data. The blocking model reproduces the

following characteristic features; FCM of Cu97Co3 increases monotonously

with decreasing temperature and becomes larger than ZFCM far above Tp.

Such features reflect the distribution of the blocking temperature, i .e., the

distribution of the particle volume. The temperature at which the irrevers-

ibility appears corresponds to the maximum of the blocking temperature.

The field-cooled-magnetization increases with decreasing temperature until

all particles are blocked.

On the other hand, for Au96Fe4, the clear cusp in ZFCM can be also

explained by the blocking model with the rectangular volume distribution

function (Fig. 6.9). The difference between FCM and ZFCM appears only

below Tg because Tg corresponds to the maximum blocking temperature

when f(Vr) is given by the rectangular distribution function.
16) However,

the calculated result for FCM shows monotonous increasing with decreasing

temperature, while the observed FCM in Au96Fe4 is nearly independent of

temperature below Tg. This temperature-independent behavior of FCM
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indicates the particle volumes have no distribution. However, it is clear

that the temperature dependence of ZFCM cannot be explained by the

blocking model with no particle volume distribution (Fig. 6.10). Thus, it

is concluded that the blocking model cannot explain the behavior of FCM

and ZFCM of Au96Fe4.

It must be noted that the characteristic features of FCM in fine par-

ticles (FCM increases monotonously with decreasing temperature and be-

comes larger than ZFCM far above Tp) are not always observed. As de-

scribed above, when f(Vr) is given by the rectangular distribution function,

the irreversibility of the magnetization appears only below Tp. Further-

more, if the particle volumes have a narrow distribution, then FCM exhibits

temperature-independent behavior at low temperatures.34, 61) Therefore, the

most important physical quantity, which shows the difference between the

spin-glass transition and the progressive freezing of the particle moments,

is the nonlinear susceptibility χ2.

The calculated values of FCM for Cu97Co3 is larger than the observed

values at low temperatures (Figs. 6.7 and 6.8). This may be caused by the

cooling rate dependence of Tb. Chantrell and Wohlfarth
48) showed that the

blocking temperature Tb depends on the cooling rate dT/dt of the sample;

Tb increases with increasing |dT/dt|, i .e., FCM at low temperatures de-

creases with increasing |dT/dt|. In this analysis, the author has neglected

the cooling rate dependence of Tb because the value of |dT/dt| could not be

certain; the temperature was decreased stepwise in the present FCM mea-

surements. To describe exactly the temperature dependence of FCM, it is

necessary to consider the cooling rate dependence of Tb.
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The calculated result of ZFCM and FCM for Cu97Co3 at various mag-

netic fields are shown in Fig. 6.11. The blocking model also reproduces the

magnetic field dependence of ZFCM and FCM of Cu97Co3, except for the

shift of Tp with increasing field. This is also due to the oversimplification

of the blocking model. It is difficult to obtain the complete expression of

Tb(H) and of ZFCMV below Tb. In this analysis, the expression of Tb(H)

when the magnetic field H is applied parallel to the easy axis,48) and the

expression of ZFCMV when H is small6, 46, 48) were used.
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6.3 Magnetization curve

The solid curve (A) in Fig. 6.12 shows a calculated result of the magne-

tization curve for Cu97Co3 based on the superparamagnetic blocking model

(eq. (5.27)) using the parameters determined from the susceptibilities data

in Section 5.2. The calculated curve A clearly deviates from the experi-

mental data with increasing field. This difference cannot explain the con-

tribution from the isolated cobalt atoms in the copper matrix. The author

therefore searched the values of hV i, ε and σ that can describe to both mag-

netization curve and susceptibilities at high temperatures. Then the author

obtained hV i = 3.5 × 10−20 cm3 (hDi = 40.6 A), ε = 0.86 %, σ = 0.87

and f(Vr) is the log-normal distribution function. The broken curve (B)

in Fig. 6.12 shows the calculated magnetization curve using above values.

The calculated curve B is in good agreement with the experimental data of

Cu97Co3. The value of σ obtained from the magnetization curve is larger

than that obtained from χ
0
0. This is due to the influence of interaction

between the particles or to the distribution of Ku. However, the features

of the susceptibilities and the magnetization of Cu97Co3 are well explained

by the blocking model with no interaction between the particles and the

distribution of Ku.
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Section 7

Conclusion

The author made the following observations from detailed susceptibil-

ities and magnetization measurements in Cu97Co3 alloy and from the data

analysis.

(1) The linear susceptibility χ
0
0 of has a spin-glass-like maximum and

the nonlinear susceptibility χ
0
2 has a negative peak at low temperature.

However, the negative peak in χ
0
2 of is very broad compared with that

of spin glasses. At high temperatures, χ
0
0 obeys the Curie law and χ

0
2 is

proportional to T−3. This behavior of χ
0
2 in Cu97Co3 is essentially different

from the divergent behavior of χ
0
2 in spin glasses.

(2) The temperatures dependence of susceptibilities (χ
0
0, χ

00
0 , χ

0
2 and χ

00
2)

in Cu97Co3 is well described quantitatively on the basis of the simplified

superparamagnetic blocking model with no interaction between the parti-

cles. The broad peak of χ2 in fine-particle systems can be explained by the

summation of the nonlinear term of the Langevin function over the particle

volume distribution, while the origin of the divergent behavior of χ2 in spin

glasses is the frustrated interaction between spins.

(3) The field-cooled (FCM) and zero-field-cooled (ZFCM) magnetization

of Cu97Co3 exhibits the spin-glass-like behavior. However, the difference

between FCM and ZFCM obviously appears far above the temperature at

which the maximum in ZFCM occurs and FCM increases monotonously

with decreasing temperature. Such behavior of the magnetization is caused

by the distribution of the particle volume. The temperature dependence
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of FCM and ZFCM in Cu97Co3 is also well described on the basis of the

simplified superparamagnetic blocking model.

(4) The simplified superparamagnetic blocking model with any volume

distribution gives χ
0
2 proportional to T

−3 at high temperatures. Therefore,

the divergent behavior of χ
0
2 in Au96Fe4 cannot be explained by the blocking

model.

These results indicate that the origin of the magnetic properties of super-

paramagnetic fine particles and spin glasses is very different, though the

behavior of the linear susceptibility and the magnetization of fine particles

is similar to those of spin glasses. The nonlinear susceptibility χ2 shows

clearly the difference between the spin-glass transition and the progressive

freezing of the particle moments.
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Appendix A

Theory of Nonlinear Susceptibility for Spin

Glass

The most fundamental theory for a phase transition is a mean field

theory. In the case of spin glass transition, it has been difficult to construct

the mean field theory since an order parameter has not been clear. The first

attempt to make the mean field theory of spin glass was done by Edwards

and Anderson.4) The hamiltonian is

H = −1
2

X
hiji
JijSi · Sj −H

X
i

Szi , (A.1)

where Si is the spin vector on site i, S
z
i is the component of Si along the

applied field,
X
hiji
denotes a sum over all nearest neighbor spins on sites i and

j, and
X
i

denotes a sum over all spins on sites i. The exchange constants

Jij are randomly chosen according to a fixed distribution

p(Jij) =
1√
2πJ0

exp

"
−(Jij − J)

2

2J20

#
, (A.2)

where J is a mean value and J0 is a variance of the distribution. They

averaged the free energy with the replica method and introduced the order

parameter

q = hhSii2T iJ , (A.3)

where h· · ·iT is a thermal average and h· · ·iJ is a configuration average.

A Landau type phenomenological theory, which is equivalent to a mean

field theory, has been extended to spin glass problems by Suzuki.22) The

free energy functional was described by two order parameters, which are
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magnetization m and Edwards-Anderson order parameter q as follows:

F (m, q) = F0 + (am
2 + bm4 + · · ·) + (cq2 + dq3 + · · ·)

+(eqm2 + · · ·)−mH. (A.4)

The equilibrium values of m and q are determined from the following equa-

tions.

2(a+ eq + · · ·)m+ 4bm3 + · · · = H, (A.5)

2cq + 3dq2 + · · ·+ em2 = 0. (A.6)

For transition from paramagnetic phase to spin glass phase, the equation of

the state has a following solution.

m = 0, (A.7)

q = −2c
3d
+ · · · (A.8)

The spin-glass transition temperature Tg is defined by

c (Tg) = 0. (A.9)

He showed that the spin-glass order parameter q is proportional to H2 as

q = χSGH
2 ≥ 0, (A.10)

χSG = −
e

2 c (T )
χ20 ∝

1

c (T )
≥ 0. (A.11)

Therefore the conjugate field of q is a square of H and the order parameter

susceptibility χSG diverges at Tg. He also showed the nonlinear susceptibility

χ2 is proportional to χSG in the vicinity of Tg. The magnetization m is

expanded with respect to an applied magnetic field H in the vicinity of a

spin-glass transition temperature Tg as

m = χ0H + χ2H
3 + χ4H

5 + · · · , (A.12)
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where χ0 is the linear susceptibility, and χ2, χ4, · · · are the nonlinear sus-

ceptibilities. The relation between χSG and χ2 near Tg is given by

χ2 =
e2

c (T )
χ40 − 4bχ40 ∝ −χSG ≤ 0. (A.13)

Thus χ2 of spin glass diverges negatively at Tg.

The temperature dependence of χ2 for the spin-glass transition near Tg

is given as follows: The order parameters m and q are given as4)

m =
¿
tanh

µ
xJ0
kBT

√
zq +

H

kBT

¶À
G

, (A.14)

q =
¿
tanh2

µ
xJ0
kBT

√
zq +

H

kBT

¶À
G

, (A.15)

where z is the number of the nearest neighbor spins, kB is the Boltzmann

constant and

hQ(x)iG =
1√
2π

Z ∞
−∞
Q(x) exp

Ã
−x

2

2

!
dx. (A.16)

The spin-glass order parameter q is expanded with respect to H just above

Tg as

q =
H2

k2BT
2 − zJ20 hx2iG

+ · · · = χSGH
2 + · · · . (A.17)

Thus the order parameter susceptibility χSG is given by

χSG =
1

k2BT
2 − zJ20

≈ 1

2k2BT
2
g

Ã
Tg

T − Tg

!
, (A.18)

where

Tg =

√
zJ0
kB

, (A.19)

and

hx2iG = 1. (A.20)
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The order parameter m is also expanded with respect to H just above Tg

as

m =
H

k2BT
− zJ20
k3BT

3
qH − H3

3k3BT
3
+ · · ·

≈ H

k2BT
− zJ20
k3BT

3
χSGH

3 − H3

3k3BT
3
+ · · · . (A.21)

Therefore the nonlinear susceptibility χ2 is given by

χ2 = −
zJ20
k3BT

3
χSG −

1

3k3BT
3
≈ − 1

2k3BT
3
g

Ã
Tg

T − Tg

!
. (A.22)

Thus the nonlinear susceptibility χ2 diverges negatively at Tg obeying eq.

(A.22). Similar results were obtained by Wada and Takayama23) using the

Sherrington-Kirkpatrick model62) (infinite-ranged interaction model), and

by Fujiki and Katsura24) using the Bethe approximation.

In general, the mean field theory and the Landau phenomelogy neglect

fluctuation effects. Including the fluctuation effects, physical quantities near

Tg deviates from the results of the mean field theory. Then the tempera-

ture dependence of χ2 for temperatures just above Tg is dominated by the

following power law divergence:22, 24)

χ2 = Γ t−γ , (A.23)

t ≡ T − Tg
Tg

, (A.24)

where t is the reduced temperature, γ (> 1)24) is the critical exponent, Γ is

the critical amplitude.
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18) R. Tournier, J. J. Veyssié and L. Weil: J. Phys. Radium 23 (1962) 672.

19) M. El-Hilo and K. O’Grady: IEEE Trans. Magn. 26 (1990) 1807.

20) M. El-Hilo, K. O’Grady and J. Popplewell: J. Appl. Phys. 69 (1991)

5133.

21) C. J. W. Koch, M. B. Madsen and S. Mørup: Hyperfine Interact. 28

(1986) 549.

22) M. Suzuki: Prog. Theor. Phys. 58 (1977) 1151.

23) K. Wada and H. Takayama: Prog. Theor. Phys. 64 (1980) 327.

24) S. Fujiki and S. Katsura: Prog. Theor. Phys. 65 (1981) 1130.

25) Y. Miyako, S. Chikazawa, T. Saito and Y. G. Youchunas: J. Phys. Soc.

Jpn. 46 (1979) 1951.

26) S. Chikazawa, C. J. Sandberg and Y. Miyako: J. Phys. Soc. Jpn. 50

(1981) 2884.

27) S. Chikazawa, S. Taniguchi, H. Matsuyama and Y. Miyako: J. Magn. &

Magn. Mater. 31—34 (1983) 1355.

28) T. Taniguchi, H. Matsuyama, S. Chikazawa and Y. Miyako: J. Phys.

Soc. Jpn. 52 (1983) 4323.

29) T. Taniguchi and Y. Miyako: J. Phys. Soc. Jpn. 57 (1988) 3520.

30) R. Omari, J. J. Prejean and J. Souletie: J. Phys. (Paris) 44 (1983)

1069.

31) H. Bouchiat: J. Phys. (Paris) 47 (1986) 71.

32) D. Fiorani, J. L. Dormann, J. L. Tholence, L. Bessais and D. Villers:

J. Magn. & Magn. Mater. 54—57 (1986) 173.

33) D. Fiorani, J. Tholence and J. L. Dormann: J. Phys. C19 (1986) 5495.

34) D. Fiorani: Magnetic Properties of Fine Particles , eds. J. L. Dormann

106



and D. Fiorani (North-Holland, Amsterdam, 1992) p. 135.

35) M. R. Corson: Rev. Sci. Instrum. 53 (1982) 1606.

36) T. Bitoh, T. Shirane and S. Chikazawa: J. Phys. Soc. Jpn. 62 (1993)

2837.

37) R. B. Goldfarb and J. V. Minervini: Rev. Sci. Instrum. 55 (1984) 761.

38) H. Arisawa: Thesis for a Degree of Master of Engineering, Muroran

Institute of Technology, Muroran, Hokkaido (1988).

39) R. V. Chamberlin, M. Hardiman and R. Orbach: J. Appl. Phys. 52

(1981) 1771.

40) R. V. Chamberlin, M. Hardiman, L. A. Turkevich and R. Orbach:

Phys. Rev. B25 (1982) 6720.
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