@@@@@ 
     
 (appeared 
between 2016 -2020)
 
      Monte 
Carlo simulations on phase change in aggregate structures of 
ferromagnetic spherocylinder particles,
      
Colloid and Surfaces A,  Vol. 504, pp. 
393–399 , 
2016, 9.
      Control 
of the orientational characteristics of disk-like hematite particles by a simple 
shear flow,
,      Mechanical Engineering Letters, 
Vo.2, 16-00314, 
2016.
(75) Satoh, A. and Okada, K.. 
      
Quasi-2D Monte Carlo simulations of the regime change in the aggregates of 
magnetic cubic particles on a material 
surface,
      Molecular Physics, 
  Vol.115, No. 6, 
pp. 683-701, 
2017, 2. 
(76) Okada, K. and 
Satoh, A.
      Regime of 
aggregate structures and magneto-rheological characteristics of a magnetic 
rod-like particle 
suspension: Monte Carlo
      and Brownian dynamics 
simulations, 
      
Journal of Magnetism and 
Magnetic Materials, Vol. 437, PP. 29-41, 2017, 
9. 
(77) 
Okada, K. and 
Satoh, A.
      Dependence of the regime 
change in particle aggregates on the composition ratio of magnetic cubic 
particles with different 
      magnetic moment 
directions,      
      Colloid and Surfaces 
A, Vol. 557, pp. 146-154 , 
2018.
(78) Okada, K. and Satoh, A. 
      3D Monte 
Carlo simulations on the aggregate structures of a suspension composed of cubic 
hematite particles,
      Molecular Physics,  
Vol. 116, pp. 2300-2309, 2018. 
(79) Satoh, A. and Cuadra, C.
      
Experimental verification of negative magnetorheological characteristics in 
spindle-like hematite particle suspensions,  
      Journal of Magnetism and Magnetic Materials, 
Vol. 469, pp. 606-612, 2018, 9. 
(80) Serantes, D., Chantrell, R. W., 
Gavilan, H.,  Morales, M. del P., Chubykalo-Fesenko, O., Baldomir, D. and 
Satoh, A.  
      Anisotropic magnetic 
nanoparticles for biomedicine: bridging frequency separated AC-field controlled 
domains of actuation,   
      
Physical Chemistry Chemical Physics, Vol. 20, pp. 30445-30454 2018, 12.
(81) 
Satoh, A.
      Flow characteristics of a microjet 
arising in an electro-conjugate fluid under a high electric field, 
      Molecular Physics, Vol. 117, pp. 1813-1824, 
2019. 
(82) Suzuki, S., Satoh, A., and Wada, 
S.
      Monte Carlo simulations of magnetic 
particle suspensions with a simple assessment method for the particle 
overlap 
      between magnetic 
spheroids,
      Molecular Physics,Vol. 118, pp. 
e1607915 (18 pages), 2020.  
(83) Okada, K. and Satoh, A. 
      Evaluation of the translational and 
rotational diffusion coefficients of a cubic particle (For the application 
to 
      Brownian dynamics simulations),  
      Molecular Physics, Vol. 118, 5, e1631498 
(13pages), 2020.  
(84) Suzuki, S. and Satoh, 
A.
      Influence of the cluster formation in a 
magnetic particle suspention on heat production effect in an alternating 
      magnetic field,
      
Colloid and Polymer Science, Vol. 297, pp. 1265-1273, 
2019.   
(85) Satoh, A.  
@@@Feasibility of the multi-particle collision dynamics method as a 
simulation technique for  a magnetic particle suspension, 
@@@Molecular 
Simulation, Vol. 46, pp. 213-223, 2020.       
(86) Okada, K. and Satoh, A. 
@@@Sedimentation 
characteristics of spherical and rod-like particles in the gravitational field 
by Brownian dynamics simulations
      (For the 
improvement of the visibility of small lakes and ponds),  
@@@Environmental Fluid Mechanics, Vol. 20, pp. 765-790, 
2020.
(87) Satoh, A., Okada, K. 
and Futamura, M.
      Attachment characteristics of 
charged magnetic cubic particles to two parallel electrodes (3D Monte Carlo 
simulations) ,
      Molecular Simulation, Vol. 46, 
pp. 837-852, 2020.  
(88) Okada, K. and Satoh, A. 
      Brownian dynamics simulations of a cubic 
hematite particle suspension with a more effective treatment of steric layer 
interactions  
      Molecular Physics, 
Molecular Physics, Volume 118, 17, e1740806, 2020. 
(89) Yamanouchi, T. and Satoh, 
A.
      Trapping characteristics of magnetic 
rod-like particles flowing in a cylindrical pipe by means of a non-uniform, 
      Molecular Physics, Vol. 118, 23, e1778201, 
20202.
(90) Arciniegas, M. P., Castelli, 
A., Brescia, R., Serantes, D., Ruta, S., Hovorka, O., Satoh, A., Chantrell, R., 
and Pellegrino, T.
      Unveiling the dynamical 
assembly of magnetic nanocrystal zig]zag chains via in situ 
      TEM Imaging    in Liquid, 
      Small, Vol. 16, 25, 1907419, 
2020.
 ![]()
    (76) Okada, K. and Satoh, A. 
      
Relationship between aggregate regime and magneto-rheology of a ferromagnetic 
rod-like particle suspension 
      by means of 
Brownian dynamics simulations,
      Transactions of 
the Japan Society of Mechanical Engineers, Vol. 82, No. 835, pp. 15-00682,  
2016.  (in Japanese).
(77) Okada, K., Satoh, 
A. and Futamura, M. 
      Aggregate structures of a 
suspension composed of cubic hematite particles by means of three-dimensional 
      Monte Carlo 
simulations,
      Transactions of the Japan Society 
of Mechanical Engineers, Vol. 83, No. 856, pp.17-00378, 2017.(in 
Japanese).
(78) Satoh, 
A.
      Availability of multi-particle collision 
dynamics method for magnetic particle 
suspensions,
      Transactions of the Japan Society 
of Mechanical Engineers, Vol. 84, No. 858, pp. 17-00440, 2018.(in 
Japanese).
(79) Satoh, A. and Futamura, 
M.
      Lattice Boltzmann simulation for 
clarification of the mechanism of a microjet arising in an electro-conjugate 
fluid,
      Transactions of the Japan Society 
of Mechanical Engineers, Vol. 84, No. 858, pp. 17-00558, 2018.(in 
Japanese).
(80) Suzuki, S., Satoh, A. and Futamura, M. 
      Aggregation phenomena of a magnetic particle 
suspension in an alternating magnetic field and the influence 
      on the heat generation effect (Brownian 
dynamics simulations),
      Transactions of the Japan 
Society of Mechanical Engineers, Vol. 84, No. 860, pp. 18-00030, 2018.(in 
Japanese).
(81) Okada, K. and Satoh, 
A.
      Brownian dynamics simulations on 
sedimentation behaviour of a dispersion composed of spherical and rod-like 
particles
      (For development of a new technology 
to improve the visibility of small lakes and 
ponds),
      Transactions of the Japan Society of 
Mechanical Engineers, Vol. 84, No. 868, pp. 18-00358, 2018.(in Japanese). 
(82) Satoh, A., K. Okada and Futamura, 
M.
      3D Monte Carlo simulations on the control 
of the aggregate structures of cubic magnetic particles in terms of 
      an external electric 
field,
      Transactions of the Japan Society of 
Mechanical Engineers, Vol. 84, No. 868, pp. 18-00321, 2018.(in Japanese). 
(83) Wada, S., Satoh, A. and Futamura, M.  
      Development of a simple assessment method 
regarding the overlap of spheroidal particles and its application 
      to Monte Carlo simulations of magnetic 
particle suspensions,
      Transactions of the 
Japan Society of Mechanical Engineers, Vol. 85, No. 872, pp. 18-00473, 2019.(in 
Japanese). 
(84) Okada, K. and Satoh, 
A.
      Diffusion coefficients of cube-like 
particles for application to Brownian dynamics 
simulations,
      Transactions of the Japan Society 
of Mechanical Engineers, Vol. 85, No. 871, pp. 18-00476, 2019.(in 
Japanese).  
(85) Okada, K. and Satoh, A..  
      Application of the Brownian dynamics method 
to magnetic cube-like particle suspensions,
      
Transactions of the Japan Society of Mechanical Engineers, Vol. 85, No. 877, pp. 
19-00236, 2019.(in Japanese). 
(86) Okada, K. and Satoh, 
A. 
      Brownian dynamics simulations on 
the magnetorheological characteristics of a cubic hematite    
      particle 
suspension
      Transactions of the Japan Society 
of Mechanical Engineers, Vol. 86, No. 884, pp. 19-00446,  
      2020.  (in 
Japanese)