

前著で取り扱った球状粒子系のモンテカルロ・シミュレーションは非常に単純で、初心者 にはとても理解しやすい.本著ではさらに進んで、扁平粒子という非球状粒子を対象とする. このような非球状粒子系のモンテカルロ・シミュレーションを理解することは、DNA や高分子 系またはカーボンナノチューブ系など、より複雑で実践的な系のシミュレーションを行う上で、 非常に参考となる.球状粒子以外の系を対象とする分子シミュレーションを行う上で難関と なるのは、粒子の重なり判定条件の数学的な解析と、それをどのように効率的にシミュレー ション上で反映させるかである.従って、本章においては、単なる煩雑な数学的な議論は避 け、シミュレーション・プログラムを作成することを念頭に置いた数学的な解析のポイントを要 領よく議論する.対象となる粒子は、粒子の中心に磁気双極子を有する円形の扁平粒子で、 凝集現象に及ぼす粒子間磁気力や磁場の影響を検討する.本章の実践例は現在研究中 のテーマであり、かなり本格的なシミュレーション・プログラムとなっている.対象とする系は粒 子数、温度、体積が一定の熱力学的平衡状態にあるとするので、正準モンテカルロ・アルゴ リズムが用いられる.

4.1 対象とする物理現象

粒子中心に磁気モーメントmを有する直径 d₁の円形の形状の扁平粒子 N 個が母液に懸 濁され,温度 T で熱力学的平衡状態にあるものとする.この系に磁場を印加した場合の粒子 の凝集現象をモンテカルロ・シミュレーションにより検討する.

4.2 問題の定式化

問題の定式化における重要な点は、粒子モデルの構築と粒子間に作用する相互作用の エネルギー、ならびに、粒子と粒子の重なり判定条件の解析である.従って、以下において は、これらについて詳しく議論することにする.

4.2.1 粒子モデル

粒子モデルとして、図 4.1 に示すように、円柱まわりの側面部が半円状の断面形状を有する円形状の扁平粒子(円形ディスク状粒子)を採用する.この粒子モデルでは扁平方向(面方向)に磁気モーメント m を粒子中心に有するものとする.円柱部の直径を d,断面が半円の端部を含めた直径を d₁、ディスク状粒子の厚さを b₁とする.このような軸対称粒子の状態を規定するには、粒子中心の位置ベクトル r_i、面に垂直な粒子方向を表す単位ベクトル e_i、磁気モーメントの方向 n_iを規定すれば十分である.ここに、粒子 i を対象としているので、下付き添字 i が付してあることに注意されたい.分子動力学法の場合には、粒子の運動も扱うので並進速度と回転速度を考慮する必要があるが、モンテカルロ法では粒子の方向と位置のみを問題にするので、以上の粒子の状態把握で十分である.磁気モーメントは粒子に固定され粒子内で自由に方向を変えないとする.従って、粒子が回転することで、磁気モーメントの方向が変わることになる.

粒子 iの磁気モーメントmiと印加磁場 Hとの相互作用のエネルギーuiは, 次のようになる.

$$u_i = -\mu_0 \boldsymbol{m}_i \cdot \boldsymbol{H} \tag{4.1}$$

)

ここに, μ₀ は真空の透磁率である. この式から, 磁気モーメントが磁場方向を向いたときエネ ルギーが最小となることがわかる. すなわち, 粒子は磁場方向に磁気モーメントを一致させ るように配向する傾向を有する.

粒子 *i*, *j* 間の磁気的な相互作用のエネルギー*u*_{*ij*}はよく知られた式で表され,磁気工学より, 次のように書けることがわかる.

図 4.1 粒子モデル

4.2 問題の定式化

$$u_{ij} = \frac{\mu_0}{4\pi r_{ij}^3} \left\{ \boldsymbol{m}_i \cdot \boldsymbol{m}_j - \frac{3}{r_{ij}^2} (\boldsymbol{m}_i \cdot \boldsymbol{r}_{ij}) (\boldsymbol{m}_j \cdot \boldsymbol{r}_{ij}) \right\}$$
(4.2)

ただし、*r*_iは粒子*i*(*i*=1,2,…,*N*)の位置ベクトル、*r*_{ij}=*r*_i-*r*_j,*r*_{ij}=|*r*_{ij}|である. 式(4.2)の意味す るところは直感的にわかりにくいが、両方の粒子の磁気モーメントが 2 粒子間の相対位置ベ クトルの方向に沿って同一方向に配向したとき、相互作用のエネルギーは最小となる. ただ し、平衡状態での凝集現象は内部エネルギー減少とエントロピー増大の兼ね合いで決定さ れるので、エネルギーだけの議論では不十分である. このことが、現象解明の方法として分 子シミュレーションに重要性を与えている. なお、粒子間に作用する相互作用としては、磁 気力の他に、電気 2 重層や界面活性剤による斥力に基づく相互作用などが考えられるが、 ここでは簡単化のために、これらの相互作用は無視することにする.

シミュレーションを行う場合,諸量を無次元化して取り扱うと,諸因子の影響を物理的に明確に論じることができるので,以上の式の無次元化した式を示すことにする.無次元化に際して,次のような代表値を用いる.距離をディスク状粒子の厚さ*b*₁,エネルギーを熱エネルギー*kT*の代表値により無次元化すると,式(4.1)および(4.2)は次のように無次元表示で表せる.

$$\boldsymbol{u}_{i}^{*} = \boldsymbol{u}_{i}/kT = -\boldsymbol{\xi}\boldsymbol{n}_{i} \cdot \boldsymbol{h}$$

$$\tag{4.3}$$

$$u_{ij}^{*} = u_{ij} / kT = \lambda \frac{1}{r_{ij}^{*3}} \{ \boldsymbol{n}_{i} \cdot \boldsymbol{n}_{j} - 3(\boldsymbol{n}_{i} \cdot \boldsymbol{t}_{ij})(\boldsymbol{n}_{j} \cdot \boldsymbol{t}_{ij}) \}$$
(4.4)

ただし, $n_i=m_i/m$, $m=|m_i|$, h=H/H, H=|H|, $t_{ij}=r_{ij}/r_{ij}$, 上付き添字*を付した量が無次元化された量である. また, ξ と λ は次のように定義される.

$$\xi = \mu_0 m H / kT, \quad \lambda = \mu_0 m^2 / 4\pi b_1^3 kT \tag{4.5}$$

なお, *n_i*, *h* はそれぞれ磁気モーメントおよび磁場の方向を表す単位ベクトルである. このように基礎式を無次元化すると,必ず無次元数とか無次元パラメータとか言われる量が現れる. 例えば,現象が磁気力と粘性力によって支配されるときに,その代表値の比という形の無次元パラメータとして基礎式に現れることになる. 上式で言えば, *ξ* とλ が無次元パラメータであり,それぞれ粒子と磁場および粒子と粒子の磁気的な相互作用の大きさが熱エネルギーに対してどの程度支配的かを大まかに表す量である.

4.2.2 粒子の重なり判定条件

図4.1に示した円形ディスク状粒子の2粒子の重なり判断は、球状粒子同士のそれと比較して、非常に困難である.外縁部同士が重なるかもしれないし、外縁部と平板部が重なるかもしれない.あらゆる重なりの可能性をすべて考慮に入れ、漏れがないようにするためには、 重なり判断の本質を見極め、それに基づいた系統的な議論が必要である.前章の球冠円柱 粒子同士の場合には、それぞれの粒子を含む2平面が平行に見える方向から眺めることに より,系統的に論ずることが可能になった.本章のディスク状粒子の場合,各粒子を含む 2 平面の交線に着目すると,系統的な議論が可能となる.従って,以下においては,ディスク 状粒子が平行でない場合について論ずる.ディスク状粒子の厚さ方向の中心の断面である 直径 d₁の円に着目すると,交わりの本質は図 4.2 に示すとおりである.図 4.2(a)は交線が粒 子を貫く場合,図 4.2(b),(c)は交線が一つの粒子のみを貫く場合で,図 4.2(b)は重なり部が 平板部の外側にある場合,図 4.2(c)は重なり部が平板部にある場合であり,図 4.2(d)は交線 が二つの粒子ともに平板部の外側にある場合である.ディスク状粒子は厚みを有するので, 以上のような場合分けをし,最短距離を把握して,重なりの有無を論じれば,漏れなく判断 できるはずである.以上が重なり判断の方針である.以下にこの方針に従って,詳しい重な り判定条件を考察する.

解析を進めるために、図 4.3 に示すような 2 粒子の配置について考える. 粒子 i の中心の 位置ベクトルを r_i , ディスク状粒子の方向を示す単位ベクトルを e_i , 粒子 i を含む平面上で交 線に下した点を S_i とし、その点の位置ベクトルを r_i ^{*}, 粒子 i の中心から S_i 方向に向かう単位 ベクトルを e_i ^{*}とする. 同様の記号を粒子j についても定義する. さらに、点 S_j から点 S_i に向 かう単位ベクトルを t_{ij} ^{*}とする. 粒子の状態を規定するこれらの諸量をまず求めて、それから、 それらの量を用いて重なり判定条件を求める.

図 4.2 厚みがない円形ディスク状粒子の重なり

交線に沿った単位ベクトル t_{ij} 。はベクトル e_i とベクトル e_j に垂直であることから、ベクトルの外積の概念を用いると次式のように求まる.

$$\boldsymbol{t}_{ij}^{s} = \boldsymbol{e}_{j} \times \boldsymbol{e}_{i} / |\boldsymbol{e}_{j} \times \boldsymbol{e}_{i}|$$

ただし、単位ベクトル t_{ij} ^sは点 S_j から点 S_i に向かう方向に取る. t_{ij} ^sを用いると、 e_i ^sは $e_i \ge t_{ij}$ ^sに 垂直で、 e_j ^sは $e_j \ge t_{ij}$ ^sに垂直なので、次のように求まる.

図 4.3 半径 r₀ (=d/2)の円の重なり解析

図 4.4 粒子 i の平板部と粒子 j の外周部との重なり解析

(4.6)

$$\boldsymbol{e}_{i}^{s} = -\boldsymbol{e}_{i} \times \boldsymbol{t}_{ij}^{s}, \quad \boldsymbol{e}_{j}^{s} = \boldsymbol{e}_{j} \times \boldsymbol{t}_{ij}^{s}$$

$$(4.7)$$

図 4.3 の状態の場合,式(4.7)で求めた e_i^s , e_j^s は,各粒子の中心点から交線に向かうような 方向となるが、2 粒子の位置関係によっては、そのようにならないので、符号を付け替える必 要がある.ここでは、そのような処理法を論ずることはせず、次節で示すことにする. 粒子 i の 中心と S_i 間の距離を k_i^s ,粒子 j に関する同様の距離を k_j^s ,点 S_i と点 S_j 間の距離を k_{ij}^s と すれば、次式が成り立つ.

$$\boldsymbol{r}_{i} + \boldsymbol{k}_{i}^{s} \boldsymbol{e}_{i}^{s} = \boldsymbol{r}_{j} + \boldsymbol{k}_{j}^{s} \boldsymbol{e}_{j}^{s} + \boldsymbol{k}_{ij}^{s} \boldsymbol{t}_{ij}^{s}$$

$$(4.8)$$

この式の左辺は, 粒子 i の中心から点 Si を記述した位置ベクトル, 右辺は粒子 j の中心から たどって点 Si を記述した位置ベクトルである. 単位ベクトルの直交関係を考慮すると, 式(4.8) から, 求める量が次のように得られる.

$$k_i^s = -\frac{\boldsymbol{e}_j \cdot \boldsymbol{r}_{ij}}{\boldsymbol{e}_j \cdot \boldsymbol{e}_i^s} , \quad k_j^s = \frac{\boldsymbol{e}_i \cdot \boldsymbol{r}_{ij}}{\boldsymbol{e}_i \cdot \boldsymbol{e}_j^s} , \quad k_{ij}^s = \boldsymbol{r}_{ij} \cdot \boldsymbol{t}_{ij}^s$$
(4.9)

重なり判定条件を論じる前に、もう一つ準備的な議論が必要である. 図 4.4 は、粒子jの外 周部が粒子iの円板部と重なり得る位置関係を示したものである. 2 粒子の属する平面のな す角を θ_0 とし、粒子jの円柱部の最近接点 Q_j から粒子iの中心平面に下した点を $Q_{i(j)}$ とす ると、その垂線の足の長さ $k_{i(j)}$ ^Qは、図 4.4(c)の幾何学的な関係から、簡単に次のように得ら れる.

$$k_{i(j)}^{\mathcal{Q}} = \left(k_{j}^{s} - d/2\right) \left| \boldsymbol{e}_{j}^{s} \cdot \boldsymbol{e}_{i} \right|$$

$$(4.10)$$

従って、点 $Q^{\varrho}_{(\mu)}$ の位置ベクトル $r^{\varrho}_{(\mu)}$ は次式のように書ける.

$$\mathbf{r}_{i(j)}^{Q} = \mathbf{r}_{j} + (d/2) \, \mathbf{e}_{j}^{s} - k_{i(j)}^{Q} \mathbf{e}_{i}$$
(4.11)

式(4.10)と(4.11)は図 4.4のような $k_j^s \ge d/2$ の関係を満足する場合に成り立つ式であり、 $k_j^s < d/2$ の場合には、式(4.10)と(4.11)に代えて次の式を用いればよい.

$$k_{i(i)}^{\mathcal{Q}} = \left(\frac{d}{2} - k_j^{s}\right) \left| \boldsymbol{e}_j^{s} \cdot \boldsymbol{e}_i \right|$$

$$(4.12)$$

$$\mathbf{r}_{i(i)}^{Q} = \mathbf{r}_{j} + (d/2) \, \mathbf{e}_{j}^{s} + k_{i(i)}^{Q} \mathbf{e}_{i}$$
(4.13)

以上で、重なり判定条件を議論する準備ができた. なお、以下の議論においては $k_i^s \leq k_j^s$ と 仮定して議論を進める.

 $e_i \ge e_j$ の方向に関して、次の三つの場合に分けて論ずることが合理的である.

I. $e_i \neq \pm e_i$ の場合(一般的な交わりの場合)

70

$$\boldsymbol{a} = \boldsymbol{R}^{-1} \cdot \boldsymbol{a}^{b} \tag{4.28}$$

$$\boldsymbol{e} = \boldsymbol{R}^{-1} \cdot \boldsymbol{e}^{b}, \qquad \boldsymbol{n} = \boldsymbol{R}^{-1} \cdot \boldsymbol{n}^{b}$$
(4.29)

粒子の方向は Z 軸方向を向くように XYZ 座標系を取っているので, 必ず $e^b = (0,0,1)$ となる. 従って, 絶対座標系での粒子方向は $e = (e_x, e_y, e_z) = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$ となる. も し, (e_x, e_y, e_z) が与えられていて, $\theta \ge \phi$ の正弦・余弦関数を求めるには, $\cos\theta = e_z$, $\sin\theta = \sqrt{1-e_z^2}$, $\cos\phi = e_x/\sin\theta$, $\sin\phi = e_y/\sin\theta$ より求まる. ここで, θ は $0 \le \theta \le \pi/2$ の領 域で定義することに注意しなければならない. この θ の定義域により生じる特別な取り扱いは 後に示す.

次に,磁気モーメントの方向 n の表し方を述べる. 図 4.6(b)に示すように, XYZ 座標系において,磁気モーメントの方向は X 軸からの反時計方向への角度 ψ で表す. すなわち,方向を 表す単位ベクトル n^b は $n^b = (\cos\psi, \sin\psi, 0)$ で表される. ψ を与えると n^b が得られ, xyz 座標系 での方向 n が,式(4.29)で表された関係式 $n = R^{-1} \cdot n^b$ より求まることになる.

4.3.4 粒子方向と磁気モーメントの方向に関する微小回転の試み

モンテカルロ・シミュレーションにおいては、一様乱数を用いて、粒子の位置や粒子の方向ならびに磁気モーメントの方向を微小量変化させる試みをすることになる. 並進移動については、特に困難な点はないが、粒子の回転や磁気モーメントの方向の回転の試みはかなり複雑となるので、以下に後者の二つの回転の試みの処理法を示す.

まず, 粒子の回転ついて述べる. 先に示したように, 任意の粒子の方向が(θ , ϕ)で与えら れるとすると, その方向を微小量($\Delta \theta$, $\Delta \phi$)変化させて(θ + $\Delta \theta$, ϕ + $\Delta \phi$)になったとする. ここで 問題となる点は, 角度 θ , ϕ は $0 \le \theta \le \pi/2$, $0 \le \phi < 2\pi$ で定義されているので, 当然 θ + $\Delta \theta$, ϕ + $\Delta \phi$ も同様の定義域となる. 従って, 次のような処理が必要となる.

(1) θ+∆θ < 0 の場合

 $\theta' = -(\theta + \Delta \theta)$, $\phi' = \phi + \Delta \phi + \pi$, $\psi' = \psi + \pi$ とする. ただし, ϕ' , ψ' は $0 \le \phi', \psi' < 2\pi$ になるようにする. 例えば ϕ' が $\phi' \ge 2\pi$ となった場合には($\phi' - 2\pi$)を ϕ' として採用する.

- (2) $\theta + \Delta \theta \ge \pi / 2$ の場合 $\theta' = \pi - (\theta + \Delta \theta), \phi' = \phi + \Delta \phi + \pi, \psi' = 2\pi - \psi$ とする. $\phi', \psi' \stackrel{\text{''}}{\text{''}} \stackrel{\text{'''}}{\text{'''}} \stackrel{\text{''}}{\text{''}} \stackrel{\text{'''}}{\text{''}} \stackrel{\text{'''}}{\text{''$
- (3) $0 \le \theta + \Delta \theta < \pi/2$ の場合 $\theta' = \theta + \Delta \theta, \phi' = \phi + \Delta \phi, \psi' = \psi$ とし、 $\phi' \ge \psi'$ については、 $0 \le \phi', \psi' < 2\pi$ の領域外 となったときには、同様の処理をする.

以上で求めた(θ', φ')とψ'に対して, 粒子方向の回転の試みの採否をモンテカルロ法によっ て決定することになる.

次に磁気モーメントの方向を微小量変化させる試みについて述べる. ψ を微小量変化さ せて $\psi + \Delta \psi$ とすると,もし $\psi + \Delta \psi \ge 2\pi$ なら $\psi' = \psi + \Delta \psi - 2\pi$ とし, $\psi + \Delta \psi < 0$ なら $\psi' = \psi + \Delta \psi + 2\pi$, それ以外なら $\psi' = \psi + \Delta \psi$ として,磁気モーメントの方向が $n'^{b} = (\cos \psi', \sin \psi', 0)$ になったとする. この場合の絶対座標系の磁気モーメントの方向n'は $n' = R^{-1} \cdot n'^{b}$ で得られるので,この磁気モーメントの方向を用いて,相互作用のエネルギ ーを計算し,モンテカルロ法によって,そのような新しい方向の採否を決めることができる.

4.4 シミュレーションのための諸設定

4.4.1 初期状態の設定

円形ディスク状粒子の初期状態の設定は基本的に第 2.1.1 項で示したとおりであるが, 粒子数を若干変更した状態を与える. 図 2.3 において, x 方向に 4 個, y 方向に 12 個並べて, 計 48 個の粒子をxy 平面上に配置する. さらに, それらをz 方向に 6 層積み重ねて, 計 288 個の粒子を配置する. この場合のシミュレーション領域の大きさは(L_x , L_y , L_z)=(4 r_pb_1 , 12 b_1 , 6 r_pb_1)となる. 粒子の間隔を各軸方向に α 倍して粒子間隔を広げて所望の体積分率 ϕ_V を与えるようにすると, 倍率 α は式(2.2)と同様にして得られ, 次のようになる.

$$\alpha = \left[\frac{\pi}{24r_p^2\phi_V} \left\{ 6(r_p - 1)^2 + 3\pi(r_p - 1) + 4 \right\} \right]^{\frac{1}{3}}$$
(4.30)

このように各軸方向に α 倍して間隔を広げて配置した粒子は完全な対称性を有するので, 微小量ずらして対称性をなくすようにする.このような設定により,初期状態から粒子が移動 しやすくなる.

以上のように粒子の位置を設定した場合,粒子の方向はすべてy軸方向を向くようになるので, $e_i = (0, 1, 0)$ ($i = 1, 2, \cdots, N$) と設定する.

磁気モーメントの方向は、乱数を用いて任意の方向に設定する. すなわち、乱数を用いて*XY* 平面上の角度 ψ を設定すると、 $n^b = (n_x^b, n_y^b, 0) = (\cos \psi, \sin \psi, 0)$ が得られ、式(4.29) より、絶対座標系の方向 *n* が得られることになる.

4.4.2 シミュレーションのための諸量の設定

上述したように、粒子数は N=288、体積分率は ø = 0.05~0.3 ぐらいの範囲でシミュレーシ

ョンを行う. 磁場は z 軸方向に印加するとして h=(0, 0, 1) となる. 相互作用のエネルギーを 計算するに際しての計算の打ち切り距離であるカットオフ距離は,ここでは $r_{coff}^* = 5d_1^*$ として いるが, 磁気的な相互作用は長距離オーダーの相互作用なので,研究用においては十分 大きな値を設定する必要がある. 粒子と磁場,ならびに,粒子と粒子の磁気的な相互作用の 大きさを表す無次元パラメータであるをとんは、 $\xi=0, 1, 10, 30, \lambda=0, 1, 10, 30, 60$ のように取っ てシミュレーションを行う. なお、 $\xi \gg 1$ ということは、印加磁場の影響が回転ブラウン運動に対 して非常に支配的であるということを意味し、同様に、 $\lambda \gg 1$ は粒子間の磁気的な相互作用が ブラウン運動に対して非常に支配的であることを意味している. シミュレーションにおける総 モンテカルロ(MC)・ステップ数(1MC ステップは1時間ステップに相当) $N_{mcsmplemx}$ =100,000 ~ 1,000,000 ぐらいで十分であるが、今回は研究用ではないので $N_{mcsmplemx}=100,000$ とする.

4.5 シミュレーションの結果

次節で示すシミュレーション・プログラムを用いて得られた凝集構造の結果を図 4.7~図 4.10 に示す. 図 4.7 は λ =0 で粒子間の磁気的な相互作用がない場合, 図 4.8 は ξ =0 で磁 場を印加しない場合, 図 4.9 は ξ =10, 図 4.10 は ξ =30 の場合のスナップショットである.

図 4.7 の場合, 磁気的な相互作用がないので, 粒子同士が凝集して結合することはない. 図 4.7(a)の場合, 印加磁場もゼロなので, 粒子の磁気モーメントは自由な方向を向いてお

(a) ξ=0

(*b*) ξ=30

図 4.7 λ=0 の場合の凝集構造

本物理現象をシミュレートするためのシミュレーション・プログラムの一例を以下に示す.プログラムは FORTRAN 言語で書かれている.

プログラムを理解しやすくするために、本プログラムで用いられる変数の主なものを説明する.

:	粒子 i の位置ベクトル r_i^* の x,y,z 成分
:	粒子 i の方向を表す単位ベクトル e, の x,y,z 成分
:	粒子 iの磁気モーメントの方向を表す単位ベクトル n, の
	<i>x,y,z</i> 成分
:	シミュレーション領域のx,y,z方向の長さ
:	系の粒子数
:	円形ディスク状粒子の直径 d_1^*
:	円形ディスク状粒子の円柱部の直径 d*
:	粒子のアスペクト比で d_1^* (= d_1/b_1)に等しい
:	粒子の1個の体積
:	粒子の体積分率φν
:	印加磁場の方向を表す単位ベクトルhのx,y,z成分
:	粒子間の磁気的な相互作用の大きさを表す無次元パラ
	メータん
:	粒子と磁場との相互作用の大きさを表す無次元パラメー
	夕 E
:	相互作用のエネルギーに関するカットオフ距離
:	乱数を用いて粒子を並進移動させる場合の最大移動距
	离隹
:	乱数を用いて粒子を回転移動させる場合の最大移動角
	度
:	0~1 に分布する一様乱数列 (J=1~NRANMX)
:	使用済みの乱数の数
:	粒子 i と相互作用する粒子との相互作用のエネルギーを
	格納
:	各 MC ステップでの磁気モーメントの方向の平均値
:	各 MC ステップでの系のエネルギーの平均値

プログラムの理解を助けるために,重要な部分に解説のための記述を付加してある.なお, 行番号は読者のために便宜上付加したものである.

準乱数については第3.6節ですでに説明したとおりであり、粒子の移動の試みで用いられる擬似乱数 RAN(*)を節約するために用いられる乱数である.

82

0001	C*	***************************************
0002	C*	mcdisk3.f *
0004	C*	(ODEN (ODEN FILE-100001 dot 1 COMMUNCIANT)
0005	C*	OPEN (9, FILE='gaaal.dat', STATUS='UNKNOWN') *
0007	C*	OPEN(13,FILE='aaa41.mgf', STATUS='UNKNOWN') *
0008	C*	OPEN(21,FILE='aaa001.dat',STATUS='UNKNOWN') *
0010	C*	OPEN (22, FILE='aaa021.dat', STATUS='UNKNOWN') *
0011	C*	OPEN(24, FILE='aaa031.dat', STATUS='UNKNOWN') *
0012	C*	OPEN(25,FILE='aaa041.dat',STATUS='UNKNOWN') ^/
0014	C*	OPEN(27, FILE='aaa061.dat', STATUS='UNKNOWN') *
0015	C*	OPEN (28, FILE='aaa071.dat', STATUS='UNKNOWN') *
0017	C*	OPEN (30, FILE='aaa091.dat', STATUS='UNKNOWN') *
0018	C*	MONTE CADIO CIMULATIONO *
0019	C*	THREE-DIMENSIONAL MONTE CARLO SIMULATION OF
0021	C*	MAGNETIC COLLOIDAL DISPERSIONS COMPOSED OF *
0022	C*	MAGNETIC DISK-LIKE PARTICLES *
0024	Č*	1. A PARTICLE IS MODELED AS A CIRCULAR DISK-LIKE PARTICLE. *
0025	C*	2. THE CLUSTER-MOVING METHOD IS NOT USED. *
0027	C*	S. A SIEKIC EATER IS NOT TAKEN INTO ACCOUNT. *
0028	C*	VER.1 BY A.SATOH , '08 5/2 *
0029	C	N : NUMBER OF PARTICLES (N=INIPX*INIPY*INIPZ)
0031	C	D1 : DIAMETER OF OUTER CIRCLE OF A DISK-LIKE PARTICLE
0032	č	B1 : THICKNESS OF PARTICLE (=1 FOR THIS CASE)
0034	Ĉ	RP : ASPECT RATIO (=D1/B1) (=D1 FOR THIS CASÉ)
0035	C	VP : VOLUME OF THE PARTICLE
0037	č	VDENS : VOLUMETRIC FRACTION
0038	C	IPTCLMDL : =1 FOR DIPOLE IN THE CENTER, =2 FOR TWO POINT CHARGES
0040	č	RA0 := RA/RP**3 FOR IPTCLMDL=1, =RA/RP FOR IPTCLMDL=2
0041	C	KU : NONDIMENSIONAL PARAMETER OF PARTICLE-FIELD INTERACTION
0042	C	RCOFF : CUTOFF RADIUS FOR CALCULATION OF INTERACTION ENERGIES
0044	Ĉ	XL,YL,ZL : DIMENSIONS OF SIMULATION REGION
0045	C	(XL,YL,ZL)=(INIPX*RP, INIPY, INIPZ*RP) *ALPHA (1) RP=3
0047	Ĉ	INITREE=1 : (INIPX, INIPY, INIPZ) = (3, 9, 12), N= 324
0048	C	INITREE=2 : $(INIPX, INIPY, INIPZ) = (4, 12, 6), N = 288$
0050	č	(2) NITREE=3 : (INIPX, INIPY, INIPZ)=(?, ?, ?), N= ?
0051	C	INITREE=4 : (INIPX, INIPY, INIPZ) = (?, ?, ?), N= ?
0053	č	() NI-5 INITREE=5 : (INIPX, INIPY, INIPZ)=(?, ?, ?), N= ?
0054	C	INITREE=6: (INIPX, INIPY, INIPZ)=(?, ?, ?), N=?
0055	c	EX (N), EY (N), EZ (N) : DIRECTION OF RODLIKE PARTICLE
0057	C	NX(N),NY(N),NZ(N) : DIRECTION OF MAGNETIC MOMENT
0058	C	E(I) : INTERACTION ENERGY OF PARTICLE I WITH THE OTHERS MOMX(**).MOMY(**) : MAG. MOMENT OF SYSTEM AT EACH TIME STEP
0060	Č	MOMZ (**)
0061	C	MEANENE(**) : MEAN ENERGY OF SYSTEM AT EACH MC STEP
0063	č	NPSI(N) : ANGLE DENOTING THE MAG.MOM. DIRECTION
0064	C	RMAT(3,3,N) : ROTATIONAL MATRIX
0066	č	SYSTEM
0067	С	DET D. MANTMIN MOTEMENT DECTANCE
0068	C	DELR : MAXIMUM MOVEMENT DISTANCE DELT : MAXIMUM MOVEMENT IN ORIENTATION
0070	C	
0072	C	U < KX < XL , U < KY < YL , U < KZ < ZL
0073	C	IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0075	C	COMMON /BLOCK1/ RX , RY , R7
0076		COMMON /BLOCK2/ NX , NY , NZ
0077		COMMON / BLOCK3/ N , NDENS , VDENS COMMON / BLOCK4/ D D1 RP VP TPTCIMDI
0079		COMMON /BLOCK5/ XL , YL , ZL , INIPX , INIPY , INIPZ , INITREE
0080		COMMON /BLOCK6/ RA , RAO , KU , HX , HY , HZ COMMON /BLOCK7/ E , ENEW , EOLD

0082 0083 0084 0085 0086 0087	C	COMMON /B COMMON /B COMMON /B COMMON /B COMMON /B	LOCK8/ RCOFF, DELF LOCK10/ MOMX , MOMY LOCK11/ EX , EY LOCK12/ NXB , NYB LOCK13/ ETHETA , EF LOCK30/ NRAN , RA	, DELT , MOMZ , MEANENE , EZ PHI , NPSI , RMAT N , IX	
0089	C	PARAMETER PARAMETER	(NN=1360 , NNS=20 (NRANMX=1000000 ,	0000) PI=3.141592653589793D0)	
0092 0093 0094 0095 0096 0097 0098	C	REAL*8 REAL*8 REAL*8 REAL*8 REAL*8 REAL*8 REAL	KU , NDENS , RX(NN) , RY(NN) , NX(NN) , NY(NN) , EX(NN) , EY(NN) , NXB(NN) , NYB(NN) ETHETA(NN) , EPHI(N MOMX(NNS) , MOMY(NN	VDENS RZ (NN) NZ (NN) , E (NN) EZ (NN) N) , NPSI (NN) , RMAT (3,3,NN) S) , MOMZ (NNS) , MEANENE (NNS)	
009900100	C	REAL INTEGER	RAN (NRANMX) NRAN , IX , NRANCH	K	
0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 0112 0113 0114 0115 0116 0117 0118	C	REAL*8 REAL*8 REAL*8 REAL*8 REAL*8 REAL*8 REAL*8 REAL*8 REAL*8 REAL*8 REAL*8 INTEGER INTEGER INTEGER INTEGER LOGICAL	RXCAN , RYCAN , RZ NXCAN , NYCAN , NZ EXCAN , EYCAN , EZ RXI , RYI , RZ EXI , EYI , EZ RXIJ , RYIJ , RZ NXBI , NYBI , N ETHETAI, EPHII, NE RMATC (3,3) ECAN , C1 , C2 CX , CY , CZ MCSMPL , MCSMPLMX NGRAPH , NOPT ITHETA , IPHAI NANIME , NANMCTR , OVRLAP	CAN CAN CAN CAN I , NXI , NYI , NZI I IJ , RIJ , RIJSQ , RCOFF2 XBC , NYBC , NXC , NYC , NZC SII, ETHETAC, EPHIC, NPSIC , C3 , C4 , MCSMPL1 , MCSMPL2 , NSMPL , DN , DNSMPL , IT , IP NOFT1 ·@baba1とbaba11に は設定値の値や磁気	
0119 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 0132			OPEN (9, FILE='@baba1 OPEN (10, FILE='baba1 OPEN (13, FILE='baba0 OPEN (21, FILE='baba0 OPEN (22, FILE='baba0 OPEN (23, FILE='baba0 OPEN (24, FILE='baba0 OPEN (25, FILE='baba0 OPEN (27, FILE='baba0 OPEN (28, FILE='baba0 OPEN (29, FILE='baba0 OPEN (29, FILE='baba0	.dat', STATUS='UNKNOWN') 1.dat', STATUS='UNKNOWN') 1.mgf', STATUS='UNKNOWN') 11.dat', STATUS='UNKNOWN') 11.d	ト10、つり呈ぶ
0134 0135 0136 0137	CCCC			PARAMETER (1)	
0138 0139 0140 0141 0142 0143 0144 0145	ccc	IPTCLMDL= VDENS = KU = RA = INITREE = N = INITREE =	1 0.1D0 10.0D0 10.0D0 2 288 1 288 1 204	・粒子数 N=288, 粒子の体積分率 ϕ_l =0.1, λ =10 ξ=10, INITREE の値によってシミュレーション領域の 大きさを変える. ・アスペクト比 r_p =3,磁場の方向は h =(0,0,1).),)
0146 0147 0148	C	N =	324 • 0.D0	PARAMETER (2)	_
0149 0150 0151 0152 0153		HY = HZ = RP = D1 = D =	0.D0 1.D0 3.D0 RP D1 - 1.D0	・カットオフ距離 r_{coff}^{*} = $5r_p$, VP は粒子の体積, NDENS は粒子の数密度.	
0155 0156 0157 0158		VP = NDENS = IF (IPTCL IF (IPTCL	(PI/24.D0)*(6.D0*(VDENS/VP MDL .EQ. 1) RAO = MDL .EQ. 2) RAO =	RP-1.D0)**2+3.D0*PI*(RP-1.D0)+4.D0) RA/RP**3 RA/RP	
0159 0160 0161 0162	с	DELR = DELT =	0.2D0 (5.D0/ <u>180.D0</u>)*PI	PARAMETER (3)	_
			・モンアカル	ー広による取人変化を $\delta r_{max} = 0.2, \delta \theta_{max} = (5/180)\pi$ とする.	

0163 0164 0165 0166 0167 0168 0169 0170	CCC	MCSMPLMX= 100000 MCSMPLMX= 10000 NGRAPH = MCSMPLMX/10 NANIME = MCSMPLMX/200 DN = 10 DNSMPL = 10 NOPT = 20 RCOFF2 = RCOFF**2 + 20 NGRAPH ごとに粒子の位置などのデータが出力される. ·MicroAVS のアニメーションのデータが 200 組出力される.	
0171	С	PARAMETER (5)	
0173 0174 0175 0176	C	IA = 0 CALL RANCAL(NRANMX, IX, RAN) NRAN = 1 NRANCHK = NRANMX - 12*N ·あらかじめ一様乱数列を作成しておき,必要なとき 変数 RAN(*)から乱数を取り出して用いる.	
0177	C		
0179	C	INITIAL CONFIGURATION	
0180 0181 0182	C C C C C C C C C C	SET INITIAL CONFIG OPEN(19,FILE='aaba091.dat',STATUS='OLD')	
0184 0185 0186	CCC CCC CCC	$\begin{array}{c} \text{READ}(19,473) & (\text{RX}(\text{I}),\text{I=1},\text{N}), & (\text{RY}(\text{I}),\text{I=1},\text{N}), & (\text{RZ}(\text{I}),\text{I=1},\text{N}) \\ \text{READ}(19,474) & (\text{NX}(\text{I}),\text{I=1},\text{N}), & (\text{NY}(\text{I}),\text{I=1},\text{N}), & (\text{NZ}(\text{I}),\text{I=1},\text{N}), \\ & & (\text{EX}(\text{I}),\text{I=1},\text{N}), & (\text{EY}(\text{I}),\text{I=1},\text{N}), & (\text{EZ}(\text{I}),\text{I=1},\text{N}), \end{array}$	
0187 0188 0189	CCC CCC CCC	& (NXB(I), I=1, N), (NYB(I), I=1, N) READ(19,473) (ETHETA(I), I=1, N), (EPHI(I), I=1, N), (NPSI(I), I=1, N) READ(19,474) (((RMAT(II, JJ, I), II=1, 3), JJ=1, 3), I=1, N)	
0190 0191 0192 0193	CCC C	CLOSE (19, STATUS= 'REEP') GOTO 7 CALL INITIAL ・データファイルに格納したデータを用いて, シミュレーションを継続実行するためのもの.	
0194	С		٦
0196 0197 0198		IF(RCOFF.GE.XL/2.D0) THEN RCOFF = XL/2.D0 - 0.00001D0 END IF ・RCOFF は必ず XL/2 より短く取る.	
0199 0200 0201		ELSE IF(RCOFF .GE. YL/2.D0) THEN RCOFF = YL/2.D0 - 0.00001D0	_
0202 0203		END IF END IF	
0204 0205 0206	С	RCOFF2 = RCOFF**2 CRAD = (XL*YL*ZL/DBLE(N*N)) / (4.D0*PI*DR)	
0207 0208 0209 0210 0211	C	WRITE (NP,12) IPTCLMDL, N, VDENS, NDENS, RA, RAO, KU, RP, & D, D1, XL, YL, ZL, RCOFF, DELR, DELT WRITE (NP,14) MCSMPLMX, NGRAPH, DN, DNSMPL	
0212 0213 0214	C C	WRITE (NP, 15) HX, HY, HZ	
0215	C	NSMPL = 0	
0218	CCCC	START OF MONTE CARLO PROGRAM	
0220	C	DO 1000 MCSMPL = 1 , MCSMPLMX	
0222 0223 0224 0225	C	DO 400 I=1,N +++++++++++++++ POSITION ++++++++ OLD ENERGY	
0226 0227 0228		RXI = RX(I) RYI = RY(I) RZI = RZ(I) RZI = RZ(I)	
0229 0230 0231		NXI = NX(I) $NYI = NY(I)$ $NZI = NZ(I)$	
0232		EXI = EX(1) EYI = EY(I) EZI = EZ(I) INTER = CONTRACT - CONTRACT	
0235 0236 0237	C	CALL ENECAL(I, RXI, RYI, RZI, EXI, EYI, EZI, NXI, NYI, NZI, & RCOFF2, EOLD, OVRLAP, ITREE, J)	
0239	C	NDAN - NDAN + 1 (1) CANDIDATE	
0240 0241 0242 0243		RXCAN = RX(I) + DELR*(1.D0 - 2.D0*DBLE(RAN(NRAN))) IF(RXCAN = RXCAN - XL) THEN RXCAN = RXCAN - XL · · 粒子 i の位置を乱数により微小量移動させる.	7