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Abstract—This paper presents a method to improve gen- necessary in an environment that poses difficulty to the
eralization capabilities of supervised neural networks based steady collection of training data. In contrast, data can be too
on topological data mapping used iin Counter Propagation ;merous because unknown data equal all data expected of

Networks (CPNs). Using topological data mapping on CPNs L . . L
the method presented herein provides advantages to interpolate training data. From the viewpoint of training data and learn-

new data in sparse areas that exist among categories and to INg algorithms, Kita [1] set the following two preconditions

remove overlapping or conflicting data in original training data. ~ dealing with generalization capabilities: 1) NNs can extract
Moreover, our method can control the number of training  some hidden rules constrained by training data; and 2) NNs
data by changing the size of the category map according paye 4 mechanism not only to store or to recall training data,

to a problem to be solved. As a type of supervised neural but also to di les t train the training dat
networks combined with our method, we select Support Vector PU! &S0 10 diSCover rules {o constrain the training data.

Machines (SVMs), which are attractive as learning algorithms As described in this paper, we specifically examine pre-
having high generalization capabilities to be mapped to a condition 1) related in training data. This paper presents a

high-dimensional space using kernel functions. We applied our method to control the number of training data for improving
method to classification problems of two-dimensional datasets the quality of training data using topological data mapping of

for evaluation of basic characteristics of our method. Topo- .
logical data mapping based compression of original training COUNter Propagation Networks (CPNs) [2]. Actually, CPNs

data induces resolution of conflict among data and reducing are supervised NNs based on Self-Organizing Maps (SOMs)
the number of Support Vectors (SVs) that are absorbed as [3] for self-mapping input data to a low-dimensional space

soft margins. The classification results show that decision of ysually one or two dimensions, with teaching signals to
boundaries are changed and that generalization capabilities are be assigned for labels as a category map. Using self-mapping

improved using our method. Moreover, we applied our method h teristi f titi | . d iahborhood
to face recognition under various illumination conditions using CNaracterisucs or competiive feaming and neighbornoo

the Yale Face Database B. The results indicate that our method learning of CPNs, our method can expand and compress
provides not only improved generalization capabilities, but also training data while retaining the topological structures of
visualizes spatial distributions of SVs on a category map. original training data. Moreover, our method can change the
number of training data concomitantly with changing of the
. INTRODUCTION number of units on the mapping layer. Using category maps
Neural networks (NNs) are widely applied to many probof CPNs, new training data are interpolated in sparse regions
lems that show difficulty of formulation or reformulation and overlapping data are removed from original training data.
because of dynamic, high-dimensional, or nonlinear data ps the precondition 2) related to training algorithms,
distributions. Actually, NNs can create mapping relationgye yse Support Vector Machines (SVMSs) [4], which are
to extract ruleS automatica”y through |eaming from giveﬁemarkab|e NNs with excellent |earning and mapp|ng Capa_
datasets. Especially, NNs express a profound impact for tigities. Actually, SVMs are known to be able to obtain high
problems that contain variations in input data because NNserformance of recognition and generalization capabilities
can change the processing structures flexibly according {8 convert input data to a higher-dimensional space using
a target problem with incremental learning or re-learningkernel functions. At the training step, representative points
Especially in computer or robot vision studies that use thgalled Support Vectors (SVs) are selected to gain decision
required algorithms in each target, NNSs can create a ClaSSifi%undaries with maximize margins among Categories_ The
only from obtained data. Moreover, NNs are applicable t&\yvMs use training data selected for SVs, not all training
various applications according to the progress of procesgata. This mechanism improved the training data quality.
ing performances of computers. As expanding applications our method, the combination of SVMs and CPNs can
of NNs, advanced and flexible recognition capabilities argealize high generalization capabilities because new training
necessary for use in various complex environments. In thifata without overlapping or contradiction are selected from
situation, generalization capabilities are expected to be usgantity expanded training data using topological mapping

ful. characteristics of CPNs.
The NNs learn one time according to the target problem
or data variation if NNs can acquire high generalization [l. RELATED WORK

capabilities. Especially, high generalization capabilities are Various methods based on training data have been pro-

osed especially in expansion of whole training data quanti-
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For the feature of our method, supervised NNs as a
End classifier are naive to the original training data. The NNs are
trained using topological expanded or compressed data with
Fig. 1. Procedure of our method. Weights and labels of CPN are used gpNs. The CPNs map input data into a topological space
training data of SVM. : . . L .
as a category map with neighborhood training and Winner-
Take-All (WTA) competition. New data are interpolated

et al. proposed a method to expand training data random jth neighborhood learning and overlapping data are deleted

based on probability density functions [6]. Although thesd'rough the WTA. The reason CPNs are not used as a
methods can expand training data easily, they might not fumﬁlassmer is that the CPN’s inventor Nielsen described that

Kita's preconditions because noise or random expanded ddie classification performance of CPNs is insufficient as a

have no hidden rules. In contrast, Tanaka et al. propos&f"SSiﬁer in Comparison to supervised NNs such as SVMs,
a method to expand training data according to the distanE2Ck-Propagation Networks (BPNs) [17], etc.
from the center of categories [7]. Although this method i88. Counter Propagation Networks

superior to methods used in random noise, they are only The CPNs are supervised and self-organizing neural net-
used for the situation in the distribution of sparse dat@orks that combine Kohonen's competitive learning algo-
among categories with readily apparent decision boundariithm and Grossberg’s outstar learning algorithm. The net-
of categories. work comprises three layers: an input layer, a Kohonen
Existing methods based on learning algorithms are preayer, and a Grossberg layer. The input layer propagates
posed variously: a method for division into subnets byraining data. The Kohonen layer performs topological map-
Chakraborty et al. [8], a method used in double-back proging through the WTA competition. The Grossberg layer
agation by Drucker et al. [9], a method to delete redundapfopagates teaching signals and assigns labels to all units
units on the hidden layer by Matsunaga et al. [10], etc. Tsuds the Kohonen layer. The labeled units are called category
[11] described that excellent learning algorithms have thre@aps. In our method, the Kohonen layer contains two-
features: high recognition rates for experiments, a theoredimensional units; the Input layer and the Grossberg layer
ical basis, and easy realization. The SVMs combine hightontain one-dimensional units.
recognition performance, especially in recognition programs, The CPN training algorithm is the following. Left, ,,(t)
a theoretical basis based on the framework of Probabpe the weight from the input unit to the Kohonen unit

Approximately Correct (PAC) learning, and a calculationy,m) at time t. Let vJ  (t) be the weight from the
method leading to a quadratic programming problem. Ther@&rossberg unij to the Kohonen unitn,m) at timet. These
fore, we used SVMs as a classifier for advanced improvemegkights are initialized using random numbers. kett) be

of generalization capabilities. the input data to the input unit at time¢. The Euclidean

distanced,, ., betweenz;(t) andw? , (t) is calculated as

1. PROPOSEDMETHOD n,m
To move from quantity control to quality improvement I
necessitates creation of data that are interpolated from sparse Ay = Z(-Ti(t) —ul ()2, (1)
data and deletion of redundant, overlapping, and conflict- =1

ing data. .V\/.e specifically examine the topological mappmgthe win unit ¢ is defined, for whichd, .. becomes a
characteristic on CPNs. This paper presents a method 1o . ’

) o e .. minimum by

improve generalization capabilities in aspects of quality im-
provement of training data using weights and labels created
with CPNs. The following describes the overall architecturéet N..(¢) be the units of the neighborhood of the unifThe
of our method and the respective learning algorithms usedeight «‘, ,, (¢) inside N, (t) is updated using the Kohonen

n,m

with CPNs and SVMs. training algorithm as

¢ = argmin(dn,m)- 2

A. Whole architecture of our method Upy o (E+ 1) =y () 4+ () (i () — uly (). (3)
Fig. 1 dep|.cts the'procgd.ures u.‘c’e.d for our methpd. FIrSf;he weightv?  (t) inside N.(t) is updated using the Gross-

CPNs are trained using original training data. All units of th erd outstar training algorithm as

mapping layer on the CPN are labeled automatically using 9 } 9 A 9 }

teaching signals. The labeled units are called category maps. v}, ,,(t + 1) = v}, . (t) + B(t)(t;(t) — v}, (1), (4)

n,m
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Therein, ¢;(t) is the teaching signal to be supplied from
the Grossberg layer(t) and 3(t) are the training coeffi-
cients that decrease with time. Training is finished when its
iterations reach the maximum number. In our methe)

and 3(t) are set respectively as 0.5 and 0.9. The maximum
number of training iterations is set as 1,000 steps.
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C. Support Vector Machines

Actually, SVMs are linear classifiers based on a two-class
classification using kernel functions. Since discovery of a o1 f a0x
calculation method using kernel tricks with kernel functions o
for replacement from a nonlinear space to a linear space 009 1
of high dimensions, SVMs have come to be used popularly
for numerous applications because of their high classification o
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and generalization capabilities. Exror rate of our proposed method [%]
The Ieammg of SVM is to calculate the bias Welghts Fig. 2. Comparison results of error rates of the Normal Mixtures dataset

« of the discriminant functionf as NV sets of input data with change ofx and the size of category maps.
z;(t =1,...,N) defined as the following:

2 R
7) = s Ty B ®
f(@) = sign(wT@ —b), (5) Cx g ®® s @
X
where sign(u) is a step function to output 1 at > 0 and & "i’; e ¥ ;’i xx
-1 atw < 0. Presuming that the teaching signaltigi = « | & g
- = - w ®E 3 @R
1..., N)) with respect tor;, then the hyperplane of the margin @ x ® . x
is maximum in two classes calculated using the minimizatio Bx x X ; gxo®
problem as ¥ ® x
x %% ® 5 %
1 ) N Qg‘ ’g g ®
L&) = il + 3 e (6) .
. (a) Classification result of SVM (b) Classification result of our method
The second term ot;(> 0,i = 1...,N) is a parameter trained by original data with new training data

permitting incorrect classifications for the input data that are
difficult to classify linearly. This mechanism is called the soft
margin method. The minimization problem éfis solvable

“Si”Q !_agra_ng_e undetermined multipliers. When Lagrang@erne| function K uses the polynomial kernel, the Radial
multiplier o is introduced, therL is calculated as Basis Function (RBF), and the Sigmoid kernel, etc. In this
study, we used RBF defined as

Fig. 3. Classification results of the Normal Mixtures dataset.
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Ld(a) = Z Q; — § Z aialjﬁitljl‘TCL‘i. (7) H{f_ fHQ
i=1 ij=1 K(z,7;) = e:ch(—fz)7 (11)

Actually, a;(> 0) is calculated to solve the quadratic prowhere ) is the variance of RBF. Because the property of the
gramming optimization problem subject to these constrainingernel differs in the setting of\, we evaluate our method
SVs on the hyperplane”z; —b = +1. In fact, b is calculated

based on the definition of the hyperplane as V. CLASSIFICATION
o We verify basic generalization capabilities of our method
b=w"z; £1. (8) for classification benchmarks that can easily yield distri-

butions of input data and classification results in a two-
dimensional space. In this experiment, we evaluated our
method using open datasets of two types: the Normal Mix-
N 1N . tures dataset [12] and the Cone-Torus dataset [13], which are
Ly4(@) = Zo‘i ~3 Z a;atit; @ (aT)®(x;), (9) widely used for evaluation of generalization capabilities.

i=1 i,j=1

To introduce a nonlinear mapping functioh to a high-
dimensional feature space, Eq. (7) is calculated as

A. Normal Mixtures Dataset
where the inner produck(z)” ®(z;) is calculable using the  The Normal Mixtures dataset [12] created by Ripley et
following trick by the kernel functiork” on the Hilbert space a|. comprised two classes of 250-point training data and two
as classes of 1000-point testing data. In this dataset, some data
()T ®(z;) = K(&, 7). (10) points are overlapped around boundaries between clusters.
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Fig. 5. Classification results obtained using the Cone-Torus dataset.
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Fig. 4. Comparison results of error rates of the Cone-Torus dataset wi91f 30 x 30 UI.’llt.S is the minimum of the error rate. In this
changing of) and the size of category maps. case, the training data are expanded to 225 percent.

Fig. 5 portrays the decision boundary and SVs obtained
using the conventional SVM and using our method. We
Fig. 2 shows comparison results of error rates of theonsider that the category map with a larger number of units
conventional SVM trained with original data and our methodthat can create more numerous new training data is valid
We used category maps of three sizE5x 10 units, 15 x 15 because this dataset contains overlapping data and complex
units, and20 x 20 units. We changed\, which shows the boundaries in the data distribution. The minimum error rates
variance of RBF of Eq. 11 from 0.01 to 1.00 step by 0.01 anfbr the test dataset are, respectively, 9.00 and 8.50 percent
shown the results in this figure. Comparison results refledgsing the SVM trained using original data and our method.
that the error rates of our method are greatly decreas@dtherefore, the generalization capability is improved 0.50
compared with results obtained using the conventional SVMbercent using our method. In [8], the error rate using the
Especially, the results dfd x 10 units indicate the minimum same dataset with the method presented by Chakraborty et
error rate. al. is 14.75 percent. Compared with the results, the error rate
Fig. 3(a) portrays classification results obtained using improved 6.25 percent using our method.
conventional SVM with original training data. The data
points surrounded by circles represent training data selecte4 FACE RECOGNITION UNDER VARIOUS ILLUMINATION
as SVs. In the case of original data, many SVs that are CONDITIONS
merged as a soft margin are visible. Fig. 3(b) portrays the In problems of high-dimensional input data such as image
classification results obtained using our method. We set tti@cognition, showing the existence of a hidden rule or not
category mapl0 x 10 units based on the comparison resulis @ challenging task. Therefore, most problems are set to
presented above. The original training data are 250 points. e evaluation target of generalization capabilities for the
this case, the training data are compressed to 40 percent. $@bility of outputs of NNs to the datasets to insert variations
consider that compression was valid because original ddfa the range that can recognize visually. In contrast, to
exist sufficiently compared with the complexity of the data&know a priori that the target problem exists inside or outside
distribution. The SVs that are merged as a soft margin aking generalization capabilities over the Kita's precondition
reduced because overlapping data are removed with mapp#@ggscribed above is unknown. Therefore, we consider that
characteristics of CPNs. The minimum error rate for the testsing a database with which a hidden rule can be evaluated
dataset is 8.80 percent. Compared with the minimum err6tep-by-step is necessary. We use the Yale Face Database B
rate of 9.50 percent the conventional SVM, the error rate id4], which is an open dataset, to treat various illumination
reduced 0.70 percent. conditions step-by-step.

B. Cone-Torus Dataset A. The Yale Face Database B
The Cone-Torus dataset [13], created by Kuncheva et al., This database consisted of facial images of 10 subjects
includes three classes of 400-point training data and threéth 64 illumination conditions of different azimuths and
classes of 400-point testing data. The data are distributed éfevations. The database is separated to five subsets by
a cone shape, a torus shape, and a Gaussian shape thaiziswuths and elevations of the lighting source. In appearance-
overlapped between them. based facial recognition processing, the feature difference of
Fig. 4 shows error rates of the conventional SVM trainedlumination conditions is greater than the difference among
by original data and our method in the casel@fx 10 units, subjects.
20 x 20 units, and30 x 30 of the category map. In the In this experiment, we used Subset 1 for training and
comparison results shown in this figure, the category ma@ubsets 2—4 for testing. In [15], Okabe et al. described that
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person of each Category). Error rate of our proposed method [%]
TABLE | Fig. 7. Comparison of results of error rates with changing\aind the
size of category maps.
COMPARISON OF THE MINIMUM ERROR RATES
Method Subset 2| Subset 3] Subset 4] All Sl ol Telolsl T Tolo AHERE
Conventional SVM| 0.00% | 26.43% | 53.33% | 26.58% lalolofalS(6(5le6i8lo [oloR o || lo|_| o/l
Proposed 0.00% | 7.14% | 40.83% | 15.53% _lofolfolFolol_I I folofalolo
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Subset 5 used for evaluation is invalid because the error 1T Jof T1o
rate reached 90 percent in the experimental result with their IEEE ofo e
method using illumination cones. This rate is the same as EECE IoItels_I_FTols]_fofo
the result for recognition at random. Therefore, we use no P LT “too] | [slolololo
Subsets ajo [o]e] o) o] ojojo (o]fe] ojojoja
’ Sl To[ [olo[ololololo[ olo[ Tolo[olls[ol o Jo[ I | [o
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B. Preprocessing of o olo[ [olofo olo
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jl'he'ongmal images are 256-gray-level images. The reso- 115l B B 8 T Y 8 A 7 1Y o N N
lution is 640 x 480 pixels. We used only frontal images that i I =

are assigned two-dimensional coordinate points of the eyes Fig. 8. SV units on the category map.
and mouse. Using the coordinate points, the face region can
be extracted easily. Lee et al. released the Extended Yale
Face Database B [16] of 28 subjects to be the extracted facerresponding to each unit on the category map is used
region of 168 x 192 pixels. For this experiment, we used thisfor the new training data. Using the category map, spatial
database after preprocessing of the histogram equalizatimsiations of input data can be visualized. The categories
and median filtering. Although the image quality of the low-contain no bias or discrete regions. Independent categories
contrast parts is improved with the histogram equalizatiorare created in each subject with similar features.
noise pixels were apparently affected by the histogram ex- Fig. 7 portrays results of a comparison of error rates in
tension. We use a median filter for removing the noiseeach subset using the original data and our method. We
Subsequently, we conducted downsampling3f® x 240 changed\ from 0.1 to 1.0 step by 0.1 repeated 10 times. In
pixels for reducing the effect of head movements. Moreoveall results of our method, the error rates are lower than those
we used Principal Component Analysis (PCA) to reducebtained using the conventional SVM trained by original
the number of dimensions of the input feature vectors. Wedata. Table | shows the minimum error rates in each subset.
extracted up to the 50th feature value and used it as inpEspecially in Subset 3, the error rate is dominantly decreased
data for the CPN. The accumulated contribution rate until this 19.29 percent. The maximum recognition rate is 11.05
50th component is 99.95 percent. Regarding the robustngssrcent; the minimum error rates of the conventional SVM
against illumination conditions, Okabe et al. obtained a gooahd our method are, respectively, 26.58 and 15.53 percent.
result with their method to use illumination cones [15]. We
o . S X : VI. DISCUSSION
specifically examine simplicity of implementation to evaluate

generalization capabilities in this experiment. Therefore, we F|rst,. we verify the combination of CPNs with other
do not use illumination cones supervised NNs except for SVMs. Our method based on

training data can combine any supervised NNs. As popularly

C. Classification results used NNs, BPNs [17] are used in various applications.
Fig. 6 portrays a category map that was generated We combined with BPNs and conducted the experiment
CPNs as a learning result. The set of weights and labelgth the same conditions. The minimum error rate with



CPNs and BPNs is 21.83 percent. Similarly, the minimunoriginal training data. Moreover, we applied our method
error rate with BPNs is 26.05 percent. The improvement db the face recognition problem under various illumination
generalization capabilities is only 4.21 percent. We consideonditions using the Yale Face Dataset B. The error rate is
that the effect for topological mapping of learning data wittdecreased by 11.05 percent compared with the conventional
this combination is insufficient because BPNs learn usin§VM and the generalization capability is improved using our
all training data for getting a mapping relation. In contrastmethod. Additionally, we visualized the distribution of data
we consider that the combination with SVMs enhance botpoints to be selected as SVs on the category map using our
characteristic features because training data are examinednasthod. We ascertained that SVs are distributed around the
SVs with SVMs in case of expanding of training data withboundaries on the category map.
a category map. In our method, we selected the best size of category maps.

Along with changing the size of the category map, ouifhe suitable training data are different in each problem to
method can change the total number of training data arbie solved. Automatic setting of the size of category maps is
trarily. This means that our method can expand or compreti®e subject of our future work. Moreover, we will apply our
the number of training data according to a target problenmethod to large-scale problems.
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