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Abstract— This paper presents a method to improve gen-
eralization capabilities of supervised neural networks based
on topological data mapping used in Counter Propagation
Networks (CPNs). Using topological data mapping on CPNs
the method presented herein provides advantages to interpolate
new data in sparse areas that exist among categories and to
remove overlapping or conflicting data in original training data.
Moreover, our method can control the number of training
data by changing the size of the category map according
to a problem to be solved. As a type of supervised neural
networks combined with our method, we select Support Vector
Machines (SVMs), which are attractive as learning algorithms
having high generalization capabilities to be mapped to a
high-dimensional space using kernel functions. We applied our
method to classification problems of two-dimensional datasets
for evaluation of basic characteristics of our method. Topo-
logical data mapping based compression of original training
data induces resolution of conflict among data and reducing
the number of Support Vectors (SVs) that are absorbed as
soft margins. The classification results show that decision
boundaries are changed and that generalization capabilities are
improved using our method. Moreover, we applied our method
to face recognition under various illumination conditions using
the Yale Face Database B. The results indicate that our method
provides not only improved generalization capabilities, but also
visualizes spatial distributions of SVs on a category map.

I. I NTRODUCTION

Neural networks (NNs) are widely applied to many prob-
lems that show difficulty of formulation or reformulation
because of dynamic, high-dimensional, or nonlinear data
distributions. Actually, NNs can create mapping relations
to extract rules automatically through learning from given
datasets. Especially, NNs express a profound impact for the
problems that contain variations in input data because NNs
can change the processing structures flexibly according to
a target problem with incremental learning or re-learning.
Especially in computer or robot vision studies that use the
required algorithms in each target, NNs can create a classifier
only from obtained data. Moreover, NNs are applicable to
various applications according to the progress of process-
ing performances of computers. As expanding applications
of NNs, advanced and flexible recognition capabilities are
necessary for use in various complex environments. In this
situation, generalization capabilities are expected to be use-
ful.

The NNs learn one time according to the target problem
or data variation if NNs can acquire high generalization
capabilities. Especially, high generalization capabilities are
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necessary in an environment that poses difficulty to the
steady collection of training data. In contrast, data can be too
numerous because unknown data equal all data expected of
training data. From the viewpoint of training data and learn-
ing algorithms, Kita [1] set the following two preconditions
dealing with generalization capabilities: 1) NNs can extract
some hidden rules constrained by training data; and 2) NNs
have a mechanism not only to store or to recall training data,
but also to discover rules to constrain the training data.

As described in this paper, we specifically examine pre-
condition 1) related in training data. This paper presents a
method to control the number of training data for improving
the quality of training data using topological data mapping of
Counter Propagation Networks (CPNs) [2]. Actually, CPNs
are supervised NNs based on Self-Organizing Maps (SOMs)
[3] for self-mapping input data to a low-dimensional space
of usually one or two dimensions, with teaching signals to
be assigned for labels as a category map. Using self-mapping
characteristics of competitive learning and neighborhood
learning of CPNs, our method can expand and compress
training data while retaining the topological structures of
original training data. Moreover, our method can change the
number of training data concomitantly with changing of the
number of units on the mapping layer. Using category maps
of CPNs, new training data are interpolated in sparse regions
and overlapping data are removed from original training data.

As the precondition 2) related to training algorithms,
we use Support Vector Machines (SVMs) [4], which are
remarkable NNs with excellent learning and mapping capa-
bilities. Actually, SVMs are known to be able to obtain high
performance of recognition and generalization capabilities
to convert input data to a higher-dimensional space using
kernel functions. At the training step, representative points
called Support Vectors (SVs) are selected to gain decision
boundaries with maximize margins among categories. The
SVMs use training data selected for SVs, not all training
data. This mechanism improved the training data quality.
In our method, the combination of SVMs and CPNs can
realize high generalization capabilities because new training
data without overlapping or contradiction are selected from
quantity expanded training data using topological mapping
characteristics of CPNs.

II. RELATED WORK

Various methods based on training data have been pro-
posed especially in expansion of whole training data quanti-
tatively. Holmstrom et al. proposed a method to expand train-
ing data to add Gaussian-type white noise [5]. Karystinos
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Fig. 1. Procedure of our method. Weights and labels of CPN are used as
training data of SVM.

et al. proposed a method to expand training data randomly
based on probability density functions [6]. Although these
methods can expand training data easily, they might not fulfill
Kita’s preconditions because noise or random expanded data
have no hidden rules. In contrast, Tanaka et al. proposed
a method to expand training data according to the distance
from the center of categories [7]. Although this method is
superior to methods used in random noise, they are only
used for the situation in the distribution of sparse data
among categories with readily apparent decision boundaries
of categories.

Existing methods based on learning algorithms are pro-
posed variously: a method for division into subnets by
Chakraborty et al. [8], a method used in double-back prop-
agation by Drucker et al. [9], a method to delete redundant
units on the hidden layer by Matsunaga et al. [10], etc. Tsuda
[11] described that excellent learning algorithms have three
features: high recognition rates for experiments, a theoret-
ical basis, and easy realization. The SVMs combine high-
recognition performance, especially in recognition programs,
a theoretical basis based on the framework of Probably
Approximately Correct (PAC) learning, and a calculation
method leading to a quadratic programming problem. There-
fore, we used SVMs as a classifier for advanced improvement
of generalization capabilities.

III. PROPOSEDMETHOD

To move from quantity control to quality improvement
necessitates creation of data that are interpolated from sparse
data and deletion of redundant, overlapping, and conflict-
ing data. We specifically examine the topological mapping
characteristic on CPNs. This paper presents a method to
improve generalization capabilities in aspects of quality im-
provement of training data using weights and labels created
with CPNs. The following describes the overall architecture
of our method and the respective learning algorithms used
with CPNs and SVMs.

A. Whole architecture of our method
Fig. 1 depicts the procedures used for our method. First,

CPNs are trained using original training data. All units of the
mapping layer on the CPN are labeled automatically using
teaching signals. The labeled units are called category maps.

After learning of CPNs, new training data are created: the
weights between the input layer and the mapping layer are
used for new training data; the labels on the category map
are used for new teaching signals. New training data are
created while retaining topological structures of original data.
Our method can control the number of new training data
arbitrarily by changing the number of units on the mapping
layer.

For the feature of our method, supervised NNs as a
classifier are naive to the original training data. The NNs are
trained using topological expanded or compressed data with
CPNs. The CPNs map input data into a topological space
as a category map with neighborhood training and Winner-
Take-All (WTA) competition. New data are interpolated
with neighborhood learning and overlapping data are deleted
through the WTA. The reason CPNs are not used as a
classifier is that the CPN’s inventor Nielsen described that
the classification performance of CPNs is insufficient as a
classifier in comparison to supervised NNs such as SVMs,
Back-Propagation Networks (BPNs) [17], etc.

B. Counter Propagation Networks
The CPNs are supervised and self-organizing neural net-

works that combine Kohonen’s competitive learning algo-
rithm and Grossberg’s outstar learning algorithm. The net-
work comprises three layers: an input layer, a Kohonen
layer, and a Grossberg layer. The input layer propagates
training data. The Kohonen layer performs topological map-
ping through the WTA competition. The Grossberg layer
propagates teaching signals and assigns labels to all units
of the Kohonen layer. The labeled units are called category
maps. In our method, the Kohonen layer contains two-
dimensional units; the Input layer and the Grossberg layer
contain one-dimensional units.

The CPN training algorithm is the following. Letui
n,m(t)

be the weight from the input uniti to the Kohonen unit
(n, m) at time t. Let vj

n,m(t) be the weight from the
Grossberg unitj to the Kohonen unit(n,m) at timet. These
weights are initialized using random numbers. Letxi(t) be
the input data to the input uniti at time t. The Euclidean
distancedn,m betweenxi(t) andui

n,m(t) is calculated as

dn,m =

√√√√
I∑

i=1

(xi(t)− ui
n,m(t))2. (1)

The win unit c is defined, for whichdn,m becomes a
minimum by

c = argmin(dn,m). (2)

Let Nc(t) be the units of the neighborhood of the unitc. The
weight ui

n,m(t) inside Nc(t) is updated using the Kohonen
training algorithm as

ui
n,m(t + 1) = ui

n,m(t) + α(t)(xi(t)− ui
n,m(t)). (3)

The weightvj
n,m(t) insideNc(t) is updated using the Gross-

berg outstar training algorithm as

vj
n,m(t + 1) = vj

n,m(t) + β(t)(tj(t)− vj
n,m(t)). (4)



Therein, tj(t) is the teaching signal to be supplied from
the Grossberg layer,α(t) and β(t) are the training coeffi-
cients that decrease with time. Training is finished when its
iterations reach the maximum number. In our method,α(t)
andβ(t) are set respectively as 0.5 and 0.9. The maximum
number of training iterations is set as 1,000 steps.

C. Support Vector Machines
Actually, SVMs are linear classifiers based on a two-class

classification using kernel functions. Since discovery of a
calculation method using kernel tricks with kernel functions
for replacement from a nonlinear space to a linear space
of high dimensions, SVMs have come to be used popularly
for numerous applications because of their high classification
and generalization capabilities.

The learning of SVM is to calculate the biasb, weights
~w of the discriminant functionf as N sets of input data
~xi(i = 1, ..., N) defined as the following:

f(~x) = sign( ~wT ~x− b), (5)

wheresign(u) is a step function to output 1 atu > 0 and
-1 at u ≤ 0. Presuming that the teaching signal isti(i =
1..., N) with respect to~xi, then the hyperplane of the margin
is maximum in two classes calculated using the minimization
problem as

L(~w,~ε) =
1
2
||w||2 +

N∑

i=1

εi, (6)

The second term ofεi(≥ 0, i = 1..., N) is a parameter
permitting incorrect classifications for the input data that are
difficult to classify linearly. This mechanism is called the soft
margin method. The minimization problem ofL is solvable
using Lagrange undetermined multipliers. When Lagrange
multiplier α is introduced, thenL is calculated as

Ld(~α) =
N∑

i=1

αi − 1
2

N∑

i,j=1

αiαjtitj ~xT ~xi. (7)

Actually, αi(≥ 0) is calculated to solve the quadratic pro-
gramming optimization problem subject to these constraining
conditions. In addition,~xi subject toαi > 0 is selected to
SVs on the hyperplane~wT ~xi−b = ±1. In fact,b is calculated
based on the definition of the hyperplane as

b = ~wT ~xi ± 1. (8)

To introduce a nonlinear mapping functionΦ to a high-
dimensional feature space, Eq. (7) is calculated as

Ld(~α) =
N∑

i=1

αi − 1
2

N∑

i,j=1

αiαjtitjΦ( ~xT )Φ(~xi), (9)

where the inner productΦ(~x)T Φ(~xi) is calculable using the
following trick by the kernel functionK on the Hilbert space
as

Φ(~x)T Φ(~xi) = K(~x, ~xi). (10)
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Fig. 2. Comparison results of error rates of the Normal Mixtures dataset
with change ofλ and the size of category maps.

(a) Classification result of SVM
trained by original data

(b) Classification result of our method
with new training data

Fig. 3. Classification results of the Normal Mixtures dataset.

Kernel functionK uses the polynomial kernel, the Radial
Basis Function (RBF), and the Sigmoid kernel, etc. In this
study, we used RBF defined as

K(~x, ~xi) = exp(−||~x− ~xi||2
λ

), (11)

whereλ is the variance of RBF. Because the property of the
Kernel differs in the setting ofλ, we evaluate our method
using results to change in a certain range.

IV. CLASSIFICATION

We verify basic generalization capabilities of our method
for classification benchmarks that can easily yield distri-
butions of input data and classification results in a two-
dimensional space. In this experiment, we evaluated our
method using open datasets of two types: the Normal Mix-
tures dataset [12] and the Cone-Torus dataset [13], which are
widely used for evaluation of generalization capabilities.

A. Normal Mixtures Dataset
The Normal Mixtures dataset [12] created by Ripley et

al. comprised two classes of 250-point training data and two
classes of 1000-point testing data. In this dataset, some data
points are overlapped around boundaries between clusters.
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Fig. 4. Comparison results of error rates of the Cone-Torus dataset with
changing ofλ and the size of category maps.

Fig. 2 shows comparison results of error rates of the
conventional SVM trained with original data and our method.
We used category maps of three sizes:10×10 units,15×15
units, and20 × 20 units. We changedλ, which shows the
variance of RBF of Eq. 11 from 0.01 to 1.00 step by 0.01 and
shown the results in this figure. Comparison results reflect
that the error rates of our method are greatly decreased
compared with results obtained using the conventional SVM.
Especially, the results of10×10 units indicate the minimum
error rate.

Fig. 3(a) portrays classification results obtained using
conventional SVM with original training data. The data
points surrounded by circles represent training data selected
as SVs. In the case of original data, many SVs that are
merged as a soft margin are visible. Fig. 3(b) portrays the
classification results obtained using our method. We set the
category map10× 10 units based on the comparison result
presented above. The original training data are 250 points. In
this case, the training data are compressed to 40 percent. We
consider that compression was valid because original data
exist sufficiently compared with the complexity of the data
distribution. The SVs that are merged as a soft margin are
reduced because overlapping data are removed with mapping
characteristics of CPNs. The minimum error rate for the test
dataset is 8.80 percent. Compared with the minimum error
rate of 9.50 percent the conventional SVM, the error rate is
reduced 0.70 percent.

B. Cone-Torus Dataset
The Cone-Torus dataset [13], created by Kuncheva et al.,

includes three classes of 400-point training data and three
classes of 400-point testing data. The data are distributed in
a cone shape, a torus shape, and a Gaussian shape that is
overlapped between them.

Fig. 4 shows error rates of the conventional SVM trained
by original data and our method in the case of10×10 units,
20 × 20 units, and30 × 30 of the category map. In the
comparison results shown in this figure, the category map

(a) Classification result of SVM
trained by original data

(b) Classification result of our method
with new training data

Fig. 5. Classification results obtained using the Cone-Torus dataset.

of 30 × 30 units is the minimum of the error rate. In this
case, the training data are expanded to 225 percent.

Fig. 5 portrays the decision boundary and SVs obtained
using the conventional SVM and using our method. We
consider that the category map with a larger number of units
that can create more numerous new training data is valid
because this dataset contains overlapping data and complex
boundaries in the data distribution. The minimum error rates
for the test dataset are, respectively, 9.00 and 8.50 percent
using the SVM trained using original data and our method.
Therefore, the generalization capability is improved 0.50
percent using our method. In [8], the error rate using the
same dataset with the method presented by Chakraborty et
al. is 14.75 percent. Compared with the results, the error rate
is improved 6.25 percent using our method.

V. FACE RECOGNITION UNDER VARIOUS ILLUMINATION

CONDITIONS

In problems of high-dimensional input data such as image
recognition, showing the existence of a hidden rule or not
is a challenging task. Therefore, most problems are set to
the evaluation target of generalization capabilities for the
stability of outputs of NNs to the datasets to insert variations
in the range that can recognize visually. In contrast, to
know a priori that the target problem exists inside or outside
using generalization capabilities over the Kita’s precondition
described above is unknown. Therefore, we consider that
using a database with which a hidden rule can be evaluated
step-by-step is necessary. We use the Yale Face Database B
[14], which is an open dataset, to treat various illumination
conditions step-by-step.

A. The Yale Face Database B
This database consisted of facial images of 10 subjects

with 64 illumination conditions of different azimuths and
elevations. The database is separated to five subsets by
azimuths and elevations of the lighting source. In appearance-
based facial recognition processing, the feature difference of
illumination conditions is greater than the difference among
subjects.

In this experiment, we used Subset 1 for training and
Subsets 2–4 for testing. In [15], Okabe et al. described that



Fig. 6. Category map (Face images without illumination changes show a
person of each category).

TABLE I

COMPARISON OF THE MINIMUM ERROR RATES.

Method Subset 2 Subset 3 Subset 4 All
Conventional SVM 0.00% 26.43% 53.33% 26.58%

Proposed 0.00% 7.14% 40.83% 15.53%

Subset 5 used for evaluation is invalid because the error
rate reached 90 percent in the experimental result with their
method using illumination cones. This rate is the same as
the result for recognition at random. Therefore, we use no
Subset 5.

B. Preprocessing
The original images are 256-gray-level images. The reso-

lution is 640× 480 pixels. We used only frontal images that
are assigned two-dimensional coordinate points of the eyes
and mouse. Using the coordinate points, the face region can
be extracted easily. Lee et al. released the Extended Yale
Face Database B [16] of 28 subjects to be the extracted face
region of168×192 pixels. For this experiment, we used this
database after preprocessing of the histogram equalization
and median filtering. Although the image quality of the low-
contrast parts is improved with the histogram equalization,
noise pixels were apparently affected by the histogram ex-
tension. We use a median filter for removing the noise.
Subsequently, we conducted downsampling to320 × 240
pixels for reducing the effect of head movements. Moreover,
we used Principal Component Analysis (PCA) to reduce
the number of dimensions of the input feature vectors. We
extracted up to the 50th feature value and used it as input
data for the CPN. The accumulated contribution rate until the
50th component is 99.95 percent. Regarding the robustness
against illumination conditions, Okabe et al. obtained a good
result with their method to use illumination cones [15]. We
specifically examine simplicity of implementation to evaluate
generalization capabilities in this experiment. Therefore, we
do not use illumination cones.

C. Classification results
Fig. 6 portrays a category map that was generated by

CPNs as a learning result. The set of weights and labels
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Fig. 8. SV units on the category map.

corresponding to each unit on the category map is used
for the new training data. Using the category map, spatial
relations of input data can be visualized. The categories
contain no bias or discrete regions. Independent categories
are created in each subject with similar features.

Fig. 7 portrays results of a comparison of error rates in
each subset using the original data and our method. We
changedλ from 0.1 to 1.0 step by 0.1 repeated 10 times. In
all results of our method, the error rates are lower than those
obtained using the conventional SVM trained by original
data. Table I shows the minimum error rates in each subset.
Especially in Subset 3, the error rate is dominantly decreased
to 19.29 percent. The maximum recognition rate is 11.05
percent; the minimum error rates of the conventional SVM
and our method are, respectively, 26.58 and 15.53 percent.

VI. D ISCUSSION

First, we verify the combination of CPNs with other
supervised NNs except for SVMs. Our method based on
training data can combine any supervised NNs. As popularly
used NNs, BPNs [17] are used in various applications.
We combined with BPNs and conducted the experiment
with the same conditions. The minimum error rate with



CPNs and BPNs is 21.83 percent. Similarly, the minimum
error rate with BPNs is 26.05 percent. The improvement of
generalization capabilities is only 4.21 percent. We consider
that the effect for topological mapping of learning data with
this combination is insufficient because BPNs learn using
all training data for getting a mapping relation. In contrast,
we consider that the combination with SVMs enhance both
characteristic features because training data are examined as
SVs with SVMs in case of expanding of training data with
a category map.

Along with changing the size of the category map, our
method can change the total number of training data arbi-
trarily. This means that our method can expand or compress
the number of training data according to a target problem.
From the experimental results, the effect of improved gen-
eralization capabilities of expansion is greater than that of
compression. This result supports the knowledge of quantita-
tive retention of data, which improves quality. Feature points
around decision boundaries are selected as SVs. In contrast,
new training datasets are created based on the whole distri-
bution of feature points with our method using topological
mapping characteristics of CPNs. The convergence of error
rates of BPNs is decreased using these datasets. We consider
that this is the reason for peaking of the improvement of
generalization capability with BPNs. In SVMs, data points
except for decision boundaries are not selected as SVs. We
consider that this is the reason to improve the error rate than
BPNs. The SVs are selected only from feature points of
the original data. In contrast, our method can create new
feature points expect of the original feature points based
on topological structures. Therefore, these SVs contribute to
improvement of generalization capabilities.

Subsequently, data points that contribute to creation of de-
cision boundaries as SVs can be visualized as a category map
using our method. Units that are selected as SVs are depicted
as circles on Fig. 8 in the category map presented in Fig. 6.
Unlike the clustering problems on a two-dimensional space,
it is difficult to see the distributions of SVs to be selected for
deciding the classification accuracy and decision boundary
when the dimensions of input features are numerous. Fig. 8
portrays that selected units as SVs are distributed around the
boundaries. Our method can visualize the spatial distribution
of SVs that create hyperplanes from a category to map any
high-dimensional input data. In addition, a similarity and
neighboring relation among SVs can be elucidated using
category maps. Moreover, we consider that SVs that are
absorbed as soft margins can be visualized, although such
SVs are not apparent in this experiment.

VII. C ONCLUSIONS

This paper presents a method to improve generalization
capabilities using expansion or compression of training data
while retaining topological structures using topological map-
ping characteristics of CPNs. We applied our method to clas-
sification problems of two types: Normal Mixtures dataset
and a Cone-Torus dataset. Compared with classification re-
sults, our method is superior to the conventional SVM using

original training data. Moreover, we applied our method
to the face recognition problem under various illumination
conditions using the Yale Face Dataset B. The error rate is
decreased by 11.05 percent compared with the conventional
SVM and the generalization capability is improved using our
method. Additionally, we visualized the distribution of data
points to be selected as SVs on the category map using our
method. We ascertained that SVs are distributed around the
boundaries on the category map.

In our method, we selected the best size of category maps.
The suitable training data are different in each problem to
be solved. Automatic setting of the size of category maps is
the subject of our future work. Moreover, we will apply our
method to large-scale problems.
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