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Abstract— This paper presents an unsupervised category
classification method for time-series images that combines incre-
mental learning of Adaptive Resonance Theory-2 (ART-2) and
self-mapping characteristic of Counter Propagation Networks
(CPNs). Our method comprises the following procedures: 1)
generating visual words using Self-Organizing Maps (SOM)
from 128-dimensional descriptors in each feature point of a
Scale-Invariant Feature Transform (SIFT), 2) forming labels
using unsupervised learning of ART-2, and 3) creating and
classifying categories on a category map of CPNs for visualizing
spatial relations between categories. We use a vision system
on a mobile robot for taking time-series images. Experimental
results show that our method can classify objects into categories
according to their change of appearance during the movement
of a robot.

I. I NTRODUCTION

Recently, robots having learning functions to adapt flexibly
in various environments have been studied from various
perspectives. In particular, although studies of autonomous
behaviors that a robot chooses without human control have
become active, many problems remain as obstacles to their
practical use. Realization of advanced visual function of a
robot is important because most information that humans use
to determine behavior is visual information. One method to
realize autonomous behavior for a robot is to obtain brain-
like memory: a so-called World Image [1]. For creating a
World Image, robots must classify objects into categories to
understand the environment in terms of visual information.
In robot vision studies, knowledge must be used together
with vision to achieve a visual function resembling human
sense [2]. Robots can obtain knowledge to classify visual
information that is to be provided according to movements.
After classification into such categories, the information can
be saved as memories. In real environments for a robot, the
number of categories is mostly unknown. The categories are
also not known uniformly.

In this paper, we propose an unsupervised category clas-
sification method for discovering the number of categories.
Additionally, we use Genetic Programming (GP) to generate
intelligent behavior after acquiring various appearances in
an environment. For target data of category classification,
we use time-series images taken from a camera based on
autonomous behavior patterns used in action trees generated
by GP. We combined incremental learning of Adaptive
Resonance Theory-2 (ART-2) [3] proposed by Grossberg et
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al. and self-mapping characteristics of Counter Propagation
Networks (CPNs) [4] proposed by Nilsen. In actuality, ART-
2 is a theoretical model of unsupervised neural networks of
incremental learning that forms categories adaptively while
maintaining stability and plasticity. Features of time-series
images from the mobile robot’s camera change with time. Us-
ing ART-2, which can learn time-series changes, our method
enables an unsupervised category classification that did not
need previous setting of the number of categories. A type
of supervised neural networks—CPNs—actualize mapping
and labeling together. Such networks comprise three layers:
an input layer, a Kohonen layer, and a Grossberg layer. In
addition, CPNs learn topological relations of input data for
mapping weights between units of the input-Kohonen layers.
The resultant category classifications are represented as a
category map on the Kohonen layer.

Our method has the following three characteristics. First,
our method can generate labels as a candidate of categories
while maintaining stability and plasticity for time-series data.
Second, automatic labeling of category maps can be realized
using labels created by ART-2 as teaching signals for CPNs.
Third, our method can present the diversity of appearance
changes for visualizing spatial relations of each category on
a two-dimensional CPN map. We evaluated our method using
category classification experiments with time-series images
taken by a camera on a robot moving with GP-generated
behavior programs. As described herein, we emphasize the
effectiveness of our method in category classification and
acquisition of diverse appearances of an object to contribute
to the improvement of accuracy of category classification.

II. RELATED WORK

In the field of computer vision, realization of generic
object recognition to classify unknown objects in images
into each category is anticipated as a technology to enable
acquisition of intelligent systems [5]. Learning-based cat-
egory classification methods in generic object recognition
are roughly divisible into supervised category classification
methods and unsupervised category classification methods.
Using supervised category classification methods, classifi-
cation categories are determined and training datasets in-
cluding ground-truth labels for teaching signals are some-
times collected manually. Unsupervised category classifica-
tion methods extract categories automatically for a problem
of unknown classification categories and classify images
into respective categories. Recently in the field of com-
puter vision, studies of unsupervised category classification
methods have been active and have attracted attention as
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Fig. 1. Network architecture of our method.

technologies to express vision information. Sivic et al. pro-
posed an unsupervised category classification method using
probabilistic Latent Semantic Analysis (pLSA) and Latent
Dirichlet Allocation (LDA), which are generative models
from the statistical text literature [6]. They modeled an image
containing instances of several categories as a mixture of
topics and attempted to discover topics as object categories
from numerous images. Zhu et al. introduced Probabilistic
Grammar – Markov Models (PGMM) of generative models
that combined Probabilistic Context-Free Grammars (PCFG)
and Markov Random Fields (MRF) [7]. They used this
method to create an object category model for object de-
tection and unsupervised category classification. Todorovic
et al. proposed an unsupervised identification method using
optical, geometric, and topological characteristics of multi-
scale regions consisting of two-dimensional objects [8]. They
represented each image as a tree structure by division of
multi-scale images. Moreover, Nakamura et al. proposed
an unsupervised category classification method using mul-
timodal information of vision, hearing, and touch [9]. They
achieved category classification of objects that resemble hu-
man senses using embodied interactions of a robot. However,
these methods include the restriction of prior settings of the
number of classification categories. Therefore, those methods
are applied only slightly to classification problems in a real
environment for which the number of categories is unknown.

III. PROPOSEDMETHOD

Fig. 1 depicts the network architecture of our method. The
network performs three tasks: calculating Bag-of-Features,
generating labels for classifying sequential changes of ap-
pearances, and creating a category map for visualizing spatial
relations between categories. The procedures are the follow-
ing:

1) Extracting feature points and calculating descriptors
using Scale-Invariant Feature Transform (SIFT),

2) Creating visual words of all SIFT descriptors using
Self-Organizing Maps (SOM),

3) Calculating histograms of SIFT descriptors matched
with visual words,

4) Generating labels using ART-2,
5) Creating a category map using CPNs.
Procedures 1) through 3), which correspond to prepro-

cessing, are based on the representation of Bag-of-Features.
The SIFT processing consists of two steps: detection of
feature points and description of features. Generally, SIFT
is used as a descriptive method of local features in generic
object recognition. For producing visual words, we use
SOM, which can learn neighborhood regions while updating
cluster structure, whereas k-means must decide data of the
center of a cluster. Because we use SOM, our method can
represent visual words that lower the minimum level of false
classification. Furthermore, the combination of ART-2 and
CPNs enables unsupervised category classification that labels
a large quantity of images in each category automatically.
The detailed algorithms are the following.

A. Creating visual words using SOM

In our method, we apply SOM, not k-means, which is
generally used in Bag-of-Features, for creating visual words.
In the learning step, SOM updates weights while maintaining
topological structures of input data. Actually, SOM creates
neighborhood unit regions around the burst unit that demands
a response of the input data. Therefore, SOM can classify
various data whose distribution resembles that of the training
data. In addition, Terashima et al. reported that SOM is
superior to k-means as an unsupervised classification method
that is useful to minimize misrecognition [10]. The learning
algorithm of SOM [11] is the same as the algorithm used
between the input-Kohonen layers of CPNs.

B. Generating of labels using ART-2

Various ART types exist[12]. Our method uses ART-2,
into which it is possible to input continuous values [3]. The
learning algorithm of ART-2 is the following.

1) Top-down weightsZji, bottom-up weightsZij , and
outputs pi, qi, and ui on the F1 of sublayers are
initialized as

Zji(0) = 0, Zij(0) =
1

(1 − d)
√

M
, (1)

pi(0) = qi(0) = ui(0) = vi(0) = wi(0) = xi(0) = 0.0.
(2)

2) The input dataIi are presented to the F1; the sublayers
are propagated as

wi(t) = Ii(t) + aui(t − 1), (3)

xi(t) =
wi(t)

e + ‖w‖
, (4)

vi(t) = f(xi(t)) + bf(qi(t − 1)), (5)

ui(t) =
vi(t)

e + ‖v‖
, (6)

pi(t) =
{

ui(t) (inactive)
ui(t) + dZJi(t) (active),

(7)



qi(t) =
pi(t)

e + ‖p‖
, (8)

f(x) =
{

0 if 0 ≤ x < θ
x if x ≥ θ.

(9)

3) Search for the maximum active unitTj as

TJ(t) = max(
∑

j

pi(t)Zij(t)). (10)

4) Top-down weightsZji and bottom-up weightsZij are
updated as

d

dt
ZJi(t) = d[pi(t) − ZJi(t)], (11)

d

dt
ZiJ(t) = d[pi(t) − ZiJ(t)]. (12)

5) The vigilance thresholdρ judges whether input data
belong to a category.

ρ

e + ‖r‖
> 1, ri(t) =

ui(t) + cpi(t)
e + ‖u‖ + ‖cp‖

. (13)

When (13) is true, the active units reset and go back (3)
to search again. Repeat (2) and (4) until the change rate of
F1 is sufficiently small if (13) is not true.

In addition,a andb are coefficients on feedback loops from
u to w and fromq to v. Here,c is a propagation coefficient
from p to r, andd is a learning rate coefficient. Furthermore,
cd/(1 − d) ≤ 1 is the constraint between them, andθ is a
parameter to control a noise detection level inv. We setθ
to 0.1 andρ to 0.850 in our method.

C. Creating category maps using CPNs

The CPNs perform pattern mapping [4], i.e. CPNs map
one pattern onto another pattern in all sets of patterns.
When a pattern is presented, the learned network classifies
patterns into specific categories using weights. Our method
can automate labeling with generation of labels as teaching
signals to the units of the Grossberg layer on CPNs. The
CPN learning algorithm is the following.

1) ui
n,m(t) are weights from an input layer uniti(i =

1, ..., I) to a Kohonen layer unit(n, m)(n =
1, ..., N, m = 1, ..., M) at time t. Therein, vj

n,m(t)
are weights from a Grossberg layer unitj to a Ko-
honen layer unit(n,m) at time t. These weights are
initialized randomly. The training dataxi(t) show input
layer unitsi at time t. The Euclidean distancedn,m

separatingxi(t) andui
n,m(t) is calculated as

dn,m =

√√√√ I∑
i=1

(xi(t) − ui
n,m(t))2. (14)

2) The unit for whichdn,m is smallest is defined as the
winner unitc as

c = argmin(dn,m). (15)

NetTansor
Camera (Vision)

Object

Fig. 2. Robot used for experiments (NetTansor by Bandai Co. Ltd.).
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Fig. 3. Target objects and background.

3) Here, Nc(t) is a neighborhood region around the
winner unitc. Also, ui

n,m(t) of Nc(t) is updated using
Kohonen’s learning algorithm, as

ui
n,m(t+1) = ui

n,m(t)+α(t)(xi(t)−ui
n,m(t)). (16)

4) In addition,vj
n,m(t) of Nc(t) is updated using Gross-

berg’s outstar learning algorithm, as

vj
n,m(t + 1) = vj

n,m(t) + β(t)(tj(t) − vj
n,m(t)). (17)

In that equation,tj(t) is the teaching signal to be supplied
to the Grossberg layer. Furthermore,α(t) and β(t) are the
learning rate coefficients that decrease with the progress of
learning. The learning of CPNs repeats until the learning
iteration that was set previously. We set the learning iteration
to 10,000 steps andα(t) andβ(t) to 0.5.

IV. EXPERIMENTAL RESULTS

In this experiment, we generate behavior programs using
GP along two routes that we set in the same environment. We
evaluate the effectiveness of our method for comparison of
category classification results in the difference of time-series
images taken using a camera acquired with movements of a
robot.

A. Robot and experimental environment

Fig. 2 portrays a home robot (NetTansor; Bandai Co. Ltd.
) used in this experiment. The robot is 190 mm high, 160
mm long, and 160 mm wide. The camera specifications
are: imaging device, 1/4 inch CMOS; image format, JPEG;
resolution, 320× 240 pixels; and frame rate, 15 fps. The
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Fig. 4. Experimental environment and robot routes.

moving environment is 1,150× 1,150 mm surrounded by
300 mm high white walls. We set four objects in the
environment. We assumed the environment for moving of this
robot as a desk. In consideration of the robot height, we used
office supplies with characteristic shapes. The target objects
are a punch (Object A), a bond (Object B), a book (Object C),
and cellophane tape (Object D) shown in Fig. 3. Fig. 4 shows
the assignment of objects in the environment and the roughly
determined goals of routes for the robot. We generated
behavior programs using GP. We set landmarks on both
routes. Fig. 4(a) portrays a simple route along with walls.
Fig. 4(b) presents a route that acquires various appearances
around each object. For this experiment, we created datasets
consisting of time-series images in each behavior. Datasets
comprise training datasets and testing datasets for which the
robot runs two rounds in the environment. In the learning
phase, we evaluate both results of labels generated by ART-
2 and category maps generated by CPNs. In the testing phase,
we evaluate results of category maps generated by CPNs.

B. Generation of robot behavior

Actually, GP expands the genotype of Genetic Algorithms
(GA) to handling structural expressions such as trees or
graphs. As a heuristic approach, GP is applied to generation
of robot programs. Tree structures consist of non-terminal
nodes (functions), terminal nodes (variables or constant val-
ues), and a root. For this study, we used GP for generating
two behavior programs to run for routes A and B. Nodes
used for GP were the following.

• Terminal nodes:move, left, right, upleft, andupright,
• Non-terminal nodes:runif, progn2, andprogn3.

Terminal nodes cope with forward movement, 90 deg turns
to the left and to the right, and 15 deg turns to the left
and to the right. The non-terminal noderunif is a condition
judgment by which the first argument is executed if there
is a landmark in front of the robot; the second argument
is executed if no landmark exists. The non-terminal nodes
progn2andprogn3are functions that execute two arguments
and three arguments sequentially. For the simulation, we used
the map dividing the environment into 10× 10 blocks. One
block corresponds to 115× 115 mm. The fitness value is

�

�

�

�

�

�

�

�

	




��

��

��

��

��

��

� �� �� �� 	� ��� ��� ��� ��� �	� ��� ���
Frames

La
be

ls
 #

��
���������� ����������� ������
�����
������������� 

! ������" ! ������# ! ������$ ! ������%

Fig. 5. Labeling result of ART-2 at Behavior A.
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Fig. 6. Mapping result of CPNs at Behavior A. Numbers on the category
map and the top and bottom parts of the images correspond to the labels
created by ART-2.

increased when the robot finds a landmark and runs through
it. We set the population size to 50 individuals and the
generation to 100 steps. We used the best individuals as
behavior programs. We respectively call Behavior A and
Behavior B to be generated in routes A and B.

C. Classification results (Behavior A)

Figs. 5 and 6 respectively depict labels generated by ART-
2 and a category map generated by CPNs. Time-series images
in Behavior A are classified into 15 labels in Fig. 5. The
labels are more numerous than the target objects because
labels were assigned to each image taken by the robot turned
90 deg from the four corners in the environment. Moreover,
different labels are assigned to images including the whole
object and images as partial objects. Each object classified
with different labels with ART-2 is mapped to neighborhood
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Fig. 7. Labeling result of ART-2 at Behavior B: (a) all frames, (b) frames
of Object B.

units on the category map of CPNs in Fig. 6. Labels 7 and 13
that correspond to one image are not apparent to the category
map on CPNs.

D. Classification results (Behavior B)

Figs. 7 and 8 respectively depict labels generated by ART-
2 and a category map generated by CPNs. Time-series images
in Behavior B are classified using 40 labels in Fig. 7(a). The
labels are more numerous in Behavior B because appearances
in the environment became various with increasing behavior
patterns. Around objects, generating labels tends to become
complicated because Behavior B includes appearances of
images that include only a wall or a small object located
far from the robot. In the state of turning, labels of these
images tend to increase. Here, Fig. 7(b) presents results of
labels generated using ART-2 in images showing Object B
on 80–498 frames in Fig. 7(a). In Fig. 7(b), we portray
analyses of the relation of appearances and labels in each
object. This result demonstrates that our method can generate
labels based on appearance changes of objects, although the
behavior of turning is increased in comparison with Behavior
A. Fig. 8 shows that CPNs created categories for mapping
to neighborhood units in the category map in each image for
which ART-2 generated plural labels in each object. Based
on the relations of categories and images in each label,
our method can express different appearances of objects. In
addition, although ART-2 created different labels from wall
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Fig. 8. Mapping result of CPNs at Behavior B. Numbers on the category
map and the top and bottom parts of the images correspond to the labels
created by ART-2.

images, CPNs created the background category with mapping
to neighborhood units on a category map. Furthermore,
images of turning or partially defective objects are mapped
around border units between categories. In Labels 9 and 10,
CPNs can classify images that are confused labels by ART-2
for mapping to neighborhood units in each category.

E. Recognition results

For quantitative evaluation of the classification perfor-
mance of our method, we use the following recognition rate.

(RecognitionRate) =
(CorrectData)

(AllData)
× 100. (18)

In [13], the recall rate of SIFT is less than 50% when
objects are occluded more than 30%. We annotated images
including defective objects of more than 30% as being of
the category of backgrounds and ’other’. Tables I and II
respectively present the target datasets and the recognition
rate in each dataset for training and testing. The target
datasets presented in Table I consist of A-1 and A-2 for
the first and second rounds, with Behaviors A and B-1 and
B-2 for the first and second rounds with Behavior B. This
experiment evaluated recognition rates for all combinations
of four datasets for learning and testing.

The respective recognition rates for training datasets A-
1, A-2, B-1, and B-2 are 99.1, 98.8, 90.8, and 96.8%. In
Behavior A, the respective recognition rates for testing A-
2 and A-1 after learning A-1 and A-2 are 98.8 and 93.5%.
In addition, the respective recognition rates for testing B-1
and B-2 after learning A-1 and A-2 are 63.5, 64.3, 51.5, and
50.4%.

In Behavior B, the respective recognition rates for testing
B-2 and B-1 after learning B-1 and B-2 are 86.8 and 87.2%.



TABLE I

TARGET DATASETS.

First round Second round
Behavior A A-1 A-2
Behavior B B-1 B-2

TABLE II

RECOGNITION RATES IN EACH BEHAVIOR[%].

Testing Datasets Mean rates for
A-1 A-2 B-1 B-2 testing datasets

A-1 99.1 98.8 63.5 64.3 75.5
Training A-2 93.5 98.8 51.5 50.4 65.1 70.3
Datasets B-1 83.8 77.1 90.8 86.8 82.6

B-2 94.0 95.8 87.2 96.8 92.3 87.5

In addition, the respective recognition rates for testing A-
1 and A-2 after learning B-1 and B-2 are 83.8, 77.1, 94.0,
and 95.8%. The respective mean recognition rates for testing
datasets for Behavior A and for Behavior B are 70.3 and
87.5%. This result means that Behavior B is superior to
Behavior A for learning.

V. D ISCUSSION

Category classification for generic object recognition is
necessary to classify categories for assigning one label to one
category. However, category classification for robot vision is
necessary to classify categories for assigning labels positively
to appearance changes with sensing in an environment. We
consider that ART-2 can learn appearance changes posi-
tively for generating labels. Nevertheless, the number of
labels of ART-2 is greater because appearance changes in
the environment are increased with complicating behavior
patterns. The CPNs created categories in each object whose
appearance differs from that of neighboring units. The CPNs
integrated wall or robot-turning images to the category of
background and ’other’, although these images are caused by
increasing labels on ART-2. In addition, with the topological
mapping characteristic based on the neighborhood learning
of CPNs, images that characterized each object and images
for which the robot is turning are mapped respectively
near the center in each category and near borders between
categories. The mean recognition rate for learned Behavior
B is 17.2% higher than that of Behavior A. We consider that
the accuracy of the category classification is improved with
acquisition of various appearances. Therefore, our method
enables category classification of time-series images in a real
environment, including appearance changes of objects. We
consider this category classification method as effective not
only for computer vision for generic object recognition, but
also for robot vision for which the number of categories is
unknown and for which appearances in an environment are
various.

VI. CONCLUSION

This paper presented our proposition of an unsupervised
category classification method combined with incremental
learning of ART-2 and self-mapping characteristic of CPNs.

We applied our method to an unsupervised category classi-
fication based on appearance changes. We created behavior
programs using GP for category classification experiments
of time-series images to show the characteristics and effec-
tiveness of our method. Experiments have demonstrated that
our method represents diverse appearance changes of objects
as labels using incremental learning of ART-2. Moreover,
our method can visualize spatial relations of labels and
integrate redundant or similar labels generated by ART-2
as a category map using self-mapping characteristics and
neighborhood learning of CPNs. Our method can represent
diverse categories and improve classification performance as
well as acquire various appearances. The recognition rate
using Behavior B for providing various appearances is supe-
rior to the recognition rate using Behavior A. These results
demonstrate the necessity of generating behavior patterns and
acquiring additional various appearances using GP.

Future studies must be done to develop methods to extract
borders among clusters automatically and to determine a
suitable number of categories from category maps of CPNs.
We will apply category maps of our method to non-terminal
nodes of GP and automatically generate behavior patterns
acquiring various appearances.
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