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Abstract—This paper presents an unsupervised learning-based
method for selection of feature points and object category
classification without previous setting of the number of categories.
Our method consists of the following procedures: 1) detection
of feature points and description of features using a Scale-
Invariant Feature Transform (SIFT), 2) selection of target feature
points using One Class-Support Vector Machines (OC-SVMs), 3)
generation of visual words of all SIFT descriptors and histograms
in each image of selected feature points using Self-Organizing
Maps (SOMs), 4) formation of labels using Adaptive Resonance
Theory-2 (ART-2), and 5) creation and classification of categories
on a category map of Counter Propagation Networks (CPNs)
for visualizing spatial relations between categories. Classification
results of static images using a Caltech-256 object category
dataset and dynamic images using time-series images obtained
using a robot according to movements respectively demonstrate
that our method can visualize spatial relations of categories while
maintaining time-series characteristics. Moreover, we emphasize
the effectiveness of our method for category classification of
appearance changes of scenes.

Index Terms—OC-SVMs; SIFT; SOMs; ART-2; CPNs; Unsu-
pervised Category Classification, Robot Vision

I. I NTRODUCTION

Because of the advanced progress of computer technologies
and machine learning algorithms, generic object recognition
has been studied actively in the field of computer vision [1].
Generic object recognition is defined as a capability by which
a computer can recognize objects or scenes to their general
names in real images with no restrictions, i.e., recognition of
category names from objects or scenes in images. In the study
of robotics, one method to realize a robot having learning
functions to adapt flexibly in various environments is to obtain
brain-like memory: so-called World Images (WIs) [2]. For
creating WIs, robots must classify objects and scenes in time-
series images into categories and memorize them as Long-
Term Memory (LTM). Additionally, in real environments for a
robot, the number of categories is mostly unknown. Moreover,
the categories are not known uniformly. Therefore, a robot
must classify while generating additional categories.

Learning-based category classification methods are roughly
divisible into supervised category classification methods and
unsupervised category classification methods. Supervised cat-
egory classification methods require training datasets including
teaching signals extracted from ground-truth labels. However,
unsupervised category classification methods require no teach-
ing signals with which categories are automatically extracted

to a problem of unknown classification categories for clas-
sifying images into respective categories. Recently, studies of
unsupervised category classification methods have been active.
The subject has attracted attention because it might provide
technologies to classify visual information flexibly in various
environments.

In recent studies of category classification, various methods
have been proposed to combine the process of detecting
regions or positions of an object as a target of classification and
recognition. Barnard et al. proposed a word–image translation
model as a method based on regions [3]. They automatically
annotated segmentation images using images that assigned
some keywords previously. Lampert et al. proposed an Efficient
Subwindow Search (ESS) that can quickly detect a position
of an object using branch and bound methods and integration
images [4]. Using ESS, they realized first partial generic object
detection to calculate previously output values of Support
Vector Machines (SVMs) in each feature point and to localize
a search range gradually. Moreover, Suzuki et al. proposed
a local feature selection method used in Bag-of-Features
(BoF) with SVMs [5]. This method classifies local features
into background features and target features used for BoF.
However, these methods require previously acquired training
samples with teaching signals. Therefore, these methods are
inapplicable to a real environment for which a target region
and a background region can not be decided uniformly.

This paper presents unsupervised feature selection and
category classification for application to a vision-based mobile
robot. Our method has the following four capabilities. First,
our method can localize target feature points using One Class-
Support Vector Machines (OC-SVMs) without previous setting
of boundary information. Second, our method can generate
labels as a candidate of categories for input images while
maintaining stability and plasticity together. Third, automatic
labeling of category maps can be realized using labels cre-
ated using Adaptive Resonance Theory-2 (ART-2) as teaching
signals for Counter Propagation Networks (CPNs). Fourth,
our method can present the diversity of appearance changes
for visualizing spatial relations of each category on a two-
dimensional map of CPNs. Through category classification
experiments, we evaluate our method using the Caltech-256
object category dataset, which is thedefacto standard bench-
mark dataset for comparing the performance of algorithms in
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Fig. 1. Network architecture of our method.
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Fig. 2. Procedures of our image representation method based on BoF.

generic object recognition, and time-series images taken by a
camera on a mobile robot.

II. PROPOSEDMETHOD

Fig. 1 depicts the network architecture of our method. The
procedures are the following.

1) Extracting feature points and calculating descriptors us-
ing SIFT

2) Selecting SIFT features using OC-SVMs

TABLE I
SETTING VALUES OF PARAMETERS USING EXPERIMENTS.

Caltech-256 Robot vision
OC-SVMs ν 0.5 0.82

ART-2 θ 0.1 0.1
ρ 0.920 0.920

α(t) 0.5 0.5
CPNs β(t) 0.5 0.5

learning iteration 10,000 10,000

3) Creating visual words of all SIFT descriptors and calcu-
lating histograms of selected SIFT descriptors matched
with visual words using SOMs

4) Generating labels using ART-2
5) Creating a category map using CPNs

The combination of ART-2 and CPNs enables unsupervised
category classification that labels a large quantity of images
in each category automatically [6]. Actually, ART-2 is a theo-
retical model of unsupervised neural networks of incremental
learning that forms categories adaptively while maintaining
stability and plasticity together [7]. Features of time-series
images from the mobile robot change with time. Using ART-
2, our method enables an unsupervised category classification
that requires no setting of the number of categories. A type
of supervised neural network, CPN actualizes mapping and
labeling together. Such networks comprise three layers: an
input layer, a Kohonen layer, and a Grossberg layer [8]. In
addition, CPNs learn topological relations of input data for
mapping weights between units of the input-Kohonen layers.
The resultant category classifications are represented as a
category map on the Kohonen layer.

Procedures 1. through 3., which correspond to preprocess-
ing, are based on the representation of BoF. In fact, BoF,
which represents features for histograms of visual words with
local features as typical patterns extracted from numerous
images, is widely used to emphasize the effectiveness in image
representation methods of generic object recognition. In BoF
of our method, we applied OC-SVMs for selecting SIFT
feature points as target regions in an image. Furthermore, we
applied SOMs for creating visual words and histograms in each
image from selected features. The OC-SVMs are unsupervised-
learning-based binary classifiers that enable density estimation
without estimating a density function. Therefore, OC-SVMs
can apply to a real environment without boundary information.
Table I shows parameters of OC-SVMs, ART-2, and CPNs
with each experiment. Detailed algorithms of OC-SVMs is the
following.

A. Selected feature points using OC-SVMs

As described earlier, the OC-SVMs are unsupervised learn-
ing classifiers that estimate the dense region without estimation
of the density function. The OC-SVMs set a hyperplane that
separates data points near the original point and the other data
points using the characteristic by which the outlier data points
are mapped near the original point on a feature space with
a kernel function. The discriminant function is calculated to
divide input feature spaces into two parts. The position of
the hyperplane is changed according to parameterν, which
controls outliers of input data with change, and which has
range of 0–1.

f(x) = sgn(ω⊤Φ(x)− ρ) (1)

The restriction is set to the following.

ω⊤zi ≥ ρ− ζi, i = 1, ..., l

ζi ≥ 0, i = 1, ..., l, 0 < ν ≤ 1 (2)



The optimization problem is solved with the following restric-
tion

1

2
∥ω∥2 + 1

νl

l∑
i=1

ζi −ρ

→ min ω, ζ, andρ (3)

Therein,zi represents results of the mapping input vectorxi

to the high-dimension feature space.

Φ : xi 7→ zi (4)

In those expressions,ω and ρ are results of the optimization
problem. The Lagrangian function of the optimization problem
is calculated to solve the optimization problem.

L(ω, ζ, ρ, α, β) =
1

2
∥ω∥2 + 1

νl

l∑
i=1

ζi − ρ

−
l∑

i=1

αi((ω
⊤zi)− ρ+ ζi)−

l∑
i=1

βiζi (5)

In those expressions,α andβ of the Lagrangian function are
maximized.Ω, ρ and ζ of the Lagrangian function are mini-
mized. Lagrangian functions that are partially differentiated by
ω, b, ρ andζ are 0 for an optimized solution.

∂

∂ω
L = 0 → ω =

l∑
i=1

αizi (6)

∂

∂ζi
L = 0 → αi =

1

νl
− βi (7)

∂

∂ρ
L = 0 →

l∑
i=1

αi = 1 (8)

αi · [ρ− ζi − ω⊤zi] = 0, i = 1, ..., l
ρ− ζi − ω⊤zi ≤ 0, i = 1, ..., l
0 ≤ αi ≤ 1

νl , i = 1...., l
βi · ζi = 0, −ζi ≤ 0, βi ≥ 0, i = 1, ..., l

 (9)

Equations (6)–(9) are substituted to Lagrangian function. A
binary optimization problem is developed if the inner product
is transposed to the kernel.

1

2

l∑
i,j=1

αiαjk(z
⊤
i zj),

0 ≤ αi ≤
1

νl
, i = 1, ..., l,

l∑
i=1

αi = 1 (10)

Support vectors are learning datazi fulfilling assumptions of
(9) , αi ＞ 0 and ζi=0. The equation (6) is expanded. An
equality is true ifαi andβi are not 0 for an optimized solution
andρ is calculated as

f(z) =

l∑
i=1

αik(xi, z)− ρ, (11)

(a) Different category (b) Same category
●：Selected points,  ×：Unselected points

Fig. 3. Results of selected SIFT feature on two sample images in different
category and three sample images in the same category of Caltech-256.

where ζi ＝ 0. Points ofΦ(x) are not apparent in the dis-
criminant function that is a binary problem using a kernel
trick. Therefore, huge calculation costs of the inner product
can be avoided and the number of calculations can be reduced.
Parameterν of OC-SVMs is a high limit of unselected data and
lower limit of support vectors if the solution of the optimization
problem (3) fulfillsρ ̸=0.

III. E XPERIMENTAL RESULTS

This section presents experiment results obtained using two
datasets: the Caltech-256 object dataset, which is thedefacto
standard dataset for object recognition, and our original time-
series image dataset taken using a mobile robot. We show that
selecting feature points with OC-SVMs is efficient for category
classification using these two datasets.

A. Classification results of caltech-256

This section presents experimental results of image clas-
sification using Caltech-256, which is thedefacto standard
benchmark dataset, to compare the performance of algorithms
in generic object recognition. The target of this experiment
is category classification of static images because Caltech-256
has no temporal factors in each category. We use the highest
20 categories with the number of images in 256 categories.

Fig. 3 depicts results of selected feature points using OC-
SVMs on five sample images of Caltech-256. Fig. 3(a) shows
that our method can select feature points of target objects
in images of the Leopards and Face categories. In addition,
Fig. 3(b) shows that our method can select feature points
around the wings that characterize airplanes for various images
of the Airplane category. Fig. 4 depicts labels generated by
ART-2. The vertical and horizontal axes respectively represent
labels and images. The independent labels in each category
without confusion are generated among different categories.
Moreover, for the Airplane, Motorbike, and Face categories
one label is generated; for the Car-side and Leopards categories
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Fig. 5. Result of category mapping using CPNs of five categories.

several labels are generated. These results demonstrate that
OC-SVMs can select SIFT features of target objects and show
that ART-2 can generate independent labels to images for
which backgrounds and appearances of objects differ in each
category.

Fig. 5 depicts a category map generated by CPNs for
classifications of five categories: Airplane, Car-side, Motor-
bike, Face, and Leopards. We show images that mapped each
unit and mapping regions in each category on the category
map. Fig. 5 depicts that CPNs created categories for mapping
to neighborhood units on the category map in each image
with labels generated by ART-2. The Car-side and Leopards
categories contain several labels by ART-2. The Car-side
category is mapped to neighborhood units. On the other hand,
the Leopards category is divided into two regions.

Here, for quantitative evaluation of the classification perfor-
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Fig. 6. Experimental environment

mance of our method, we use the following recognition rate.

(RecognitionRate) =
(CorrectData)

(AllData)
× 100. (12)

Recognition rates for training datasets are, respectively, more
than 90% for 10 categories and more than 80% for 20 cate-
gories. Although recognition rates for testing datasets reached
76% for five categories, it decreased less than 50% for 10 and
20 categories.

B. Classification results of time-series images

We used an omnidirectional camera to take time-series
images with running a corridor shown in Fig. 6. Specifications
of the camera are: an imaging device, 1/3” interline CCD;
resolution, 640× 480 pixel; and frame rate, 30 fps. The camera
height on the robot is 1,500 mm from the floor. The mean
velocity of movement is 30 m/min. The corridor width is 1,830
mm. The robot runs once around counterclockwise.

Fig. 7 depicts the result of selected feature points using our
method. Feature points apply to the direction of movement;
its surrounding areas are selected. This tendency is the same
as those of other scene images. As an indication for category
classification, we annotated Zones A through D that resemble
appearances.

Fig. 8 portrays a comparison of labeling results obtained
using our method and our former method without OC-SVMs.
The results show that our method decreases not only mixed
labels, but also the total number of created labels. Fig. 9(a)
portrays classification results obtained using our method. Num-
bers in each unit on the category map correspond to the labels
portrayed in Fig. 8. Using topological mapping of CPNs, some
labels are integrated on the category map. Comparison with
the result obtained using our former method shown in Fig.
9(b) shows that the total number of categories is decreased.
We consider that feature points selected using OC-SVMs are
effective for category classification in robot vision.

IV. D ISCUSSION

Experimental results of Caltech-256 and time-series images
of the robot show that OC-SVMs select feature points not only
of the whole object, but also of the background and surround-
ing regions, and of partial objects. These results signify that
OC-SVMs can select a region to concentrate specific informa-
tion in an image, i.e. features that characterize an image, not



(a) SIFT feature points

(b) Selected SIFT feature points 

Fig. 7. Selected feature points.

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300

A B C D A

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300

A B C D A

Frames

L
a
b
e
ls

Our former methodOur method

Fig. 8. Comparison of labeling results obtained using the presented method
and our former method.

feature points to be classified into the object and background.
Humans, when classifying objects, devote attention to a region
that gathers information for characterizing an object, not the
whole object. We consider that selection of SIFT features
using OC-SVMs can describe features effectively for category
classification to represent features and can thereby improve
classification accuracy.

Regarding results of the static category classification, the
accuracy of our method reached 81% for training and 50%
for testing of 20-category classification. The unsupervised
category classification method proposed by Chen et al. [9]
showed respective performances of 76.9% for training and
67.4% for testing of 26-category classification for the Caltech
dataset. The accuracy of our method is apparently inferior to
that of the existing method. Nevertheless, our method can
classify objects without previous setting of the number of
categories. Therefore, our method is effective for application to
problems that are known as challenging tasks of classification
of categories whose ranges and types are unclear. In this
experiment, we observed 10 categories for which multiple
labels are generated on ART-2. The images of Caltech-256
have no time-series factors, although ART-2 learns time-series
changes of input data positively. Therefore, we inferred that
ART-2 maintains no continuity of labels. For the relation of
labels generated by ART-2 and a category map on CPNs,
categories that maintained continued and non-continued labels
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Fig. 9. Category maps with CPN.

are mapped respectively to neighborhood and separated units
on the category map of CPNs.

For a mobile robot, category classification of scene images
is necessary to acquire WIs. In this situation, the number of
categories is mostly unknown in a real environment. Therefore,
extracting the number of categories is necessary for category
classification. In this section, we analyze extraction of bound-
aries for which topological structures of categories change
widely using classification results of ART-2 and CPNs.

The labeling results of ART-2 shown in Fig. 8 have
two characteristic parts: rapidly changing parts and gradually
changing parts. Labels of ART-2 change rapidly while chang-
ing appearances in a scene rapidly. We set labels that change
rapidly to candidates of boundaries. Fig. 10 depicts labeling
results of ART-2 and CPNs. The candidates of boundaries
are two parts: integrated parts and nonintegrated parts. We
examine positional relations of Labels 7, 8, 16, and 18 that
are selected as candidates of boundaries on the category map.
Labels 7 and 8 are mapped onto distant units on the category
map. Therefore, we consider that boundaries exist between
them, although labels of ART-2 are integrated by CPNs. In
contrast, we consider that no category boundary exists to
map Labels 16 and 18 into neighborhood units, although
both labels are integrated by ART-2. Fig. 11 depicts category
classification results to consider extracted boundaries with
changing topological structures of categories.

Fig. 11 portrays extracted boundaries and categories. Four
categories are extracted from temporal and spatial relations
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and integrated labels with CPNs.

of labels. Fig. 12 portrays classification results of zones in
the experimental environment. Comprehensive categories with
extracted boundaries are mapped to neighborhood units on the
category map using labels generated by ART-2 and CPNs in
Fig. 11. The scene images of the environment are categorized
into four categories. Labels A’, B’ and D’ correspond to one
zone. However, Label C’ is divided into two zones. Using
temporal relations of labels by ART-2 and spatial relations
of categories on CPNs, we ascertained the possibility of
extracting global boundaries among categories. However, we
extracted it manually. Automatic extraction of categories is a
subject to be addressed in our future work.

V. CONCLUSION

This paper presented an unsupervised method of SIFT
feature points selection using OC-SVMs and category classifi-
cation combined with incremental learning of ART-2 and self-
mapping characteristic of CPNs. Our method enables feature
representation that contributes to improved accuracy of classifi-
cation for selecting feature points to concentrate characterized
information of an image. Moreover, our method can visualize
spatial relations of labels and integrate redundant and similar
labels generated by ART-2 as a category map using self-
mapping characteristics and neighborhood learning of CPNs.
Therefore, our method can represent diverse categories. Future
studies must be conducted to develop methods to extract
boundaries among clusters automatically and to determine a
suitable number of categories from category maps of CPNs.
Additionally, we will examine approaches that include gener-
ation of robot behavior for classification and recognition of
objects.
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