LEGO MINDSTORMSによるルービックキューブの自動解析

システム科学技術学部 機械知能システム学科 2年 大森 瑠奈 指導教員 システム科学技術学部 機械知能システム学科 准教授 間所 洋和

准教授 佐藤 和人

1. はじめに

コンピュータ将棋が現役プロ棋士に競い勝つ昨今において、機械の知能化は人間の思考能力に 迫りつつある。本研究では、ルービックキューブを解くという人間の高度なパターン解析能力を、 コンピュータとロボット技術を駆使して機械として実現するを目的とする.

2. 使用機材

・LEGO MINDSTORMS Education NXT及びEV3

LEGO MINDSTORMS Education NXT (以下, NXTと略記する), LEGO MINDSTORMS Education EV3 (以下, EV3と略記する)は、教育用のレゴブロックである. NXTは、マイクロプロセッサが搭載されているNXTブロックをもち、NXTブロックにプログラミングのデータを取り込み、各種センサからの情報取得や、モータ制御を行うことが可能である. 本研究では、ルービックキューブマシンの作成に使用した. EV3は、NXTの上位互換品であり、情報処理能力やGUI(Graphical User Interface)を用いたプログラミングがより容易になっている.

3. 研究内容

3.1 ルービックキューブマシンの製作と比較

3.2.1 NXTを用いたルービックキューブマシン

NXTを用いて図1に示すようなアーキタイプを作成した.アーキタイプは、キューブを回転させる台座、キューブをひっくり返すアーム、カラーセンサから構成される.

処理手順について

別ファイルに組まれたGUIプログラミングファイルにより処理が行われる. カラーセンサによりキューブの色を認識し、キューブの解析する. 解析後、台座、アームの動作を組み合わせて、キューブの面を揃える.

・キューブを回転させる機構について

キューブは、回転させたい段を一番下に配置させの回転させる。回転させたい面を 移動させ、アームでキューブの上二段を固定、台座を回転させることでキューブの回 転を行う。

ひっくり返す機構について

ひっくり返しには、台座の角度とアームによる引っ張りを利用する. アームでキューブをはさんで引っ張ると、台座についた角度によりキューブが回転する.

・アーキタイプの問題点

アーキタイプの動作確認をしたところ、2つの問題点により、キューブを6面揃えることができなかった.

1つ目は、アームの形状である。アーキタイプのアーム形状だと、キューブをひっくり返す際にキューブを持ち上げることができなかった。

2つ目は、台座の角度である。台座の角度を利用し、キューブの自重によりひっくり返す方法を採用したが、台座の角度が急でひっくり返す際にキューブが台座から転がり落ちたり、位置が傾いたことで、カラーセンサの解析に失敗した。

図1 NXTを用いたルービックキューブマシン

3.2.2 EV3を用いたルービックキューブマシン

MindCub3rを参考に、アーキタイプの問題点を基にアームの形状・台座の角度の改良を行い、図2に示すような改良機を作成した[1]. アーム全体でキューブを覆うことで、ひっくり返しの精度を向上させることができた。また、アームの改良により台座に角度をつける必要がなくなったため、台座を水平にすることができ、キューブが安定した。

処理手順について

改良機の処理手順を、図3に示す。まず、アームと台座を初期位置に戻し、超音波センサによるキューブの認識を行う。キューブが認識されると、カラーセンサによる色の配置認識が始まる。色認識に成功すると、その情報が別ファイルの解析プログラムに送られ、GUIプログラムが解析手順を計算する。その後、計算結果に基づいてキューブの色を揃える。また、色認識に失敗した場合、フィードバックがかかり、最大3回の認識作業を行う。3回の認識作業が成功しなかった場合、EV3の本体画面にエラーが表示され、プログラムはスタートに戻る。

・キューブを回転させる機構について

改良機の回転方法はアーキタイプ同様,アームでキューブの上二段を固定し,台座を回転させる.

・ひっくり返す機構について

ひっくり返す機構は、キューブをアーム全体で覆い引っ張ることにより、台座の受けを中心として回転させる。最後にアームでキューブを押し込むことで、キューブを 台座から落とすことなく回転させる。

・成功率について

キューブ操作に問題があり、一度も6面を揃えることができなかったアーキタイプとは異なり、改良機では6面を揃えることに成功した.しかし、カラーセンサの精度に限界があり、その成功率は約3割に留まり、色認識における改善の必要性を確認した.

・面の色を検出する機構について

一般的なルービックキューブの各面の色は赤・橙・黄・青・白・緑の6色である. テーブルを回転させ, 面の色をカラーセンサによって検出する. 動作中, 6色のうち, 赤と橙の色が混同し, 色の検出に失敗することがわかった.

図2 EV3を用いたルービックキューブマシン

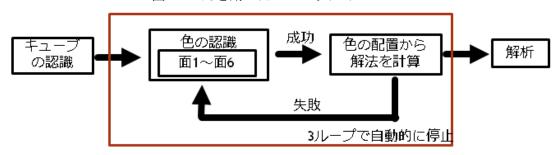


図3 改良機の処理手順

3.2 ブロックの色の検出の改良

ブロックの色の検出には、2つの問題点があることがわかった.1つは、一面づつ検出することによる検出速度の低さである.2つは、色を誤検出することである.これら2点の問題の解決のため、画像処理を用いることを考えた.検出速度の向上には、カメラの角度を変えて1度に解析できる面の数を増やすことを考えた.図4に示すように、キューブの角を中心に角に接する三面が一度に映るため、処理時間の短縮を図れる.色の検出は、照明変動に頑強なHSV表色系を用いることを考えた.図5は、OpenCVリファレンスを用いて、カメラ画像からHSV表色系を用いて面の色を検出した結果である.

4. まとめ

ルービックキューブを自動で6面揃えるロボットを製作した.しかし,成功率やスピードには,工夫が必要である.今後は,画像処理を用いた色認識により,検出精度を高め,モータを増やして組み立て達成までの速度を向上させたい.

5. 参考文献

[1]"MindCuber.com", 閲覧日2015/03/06 http://mindcuber.com/

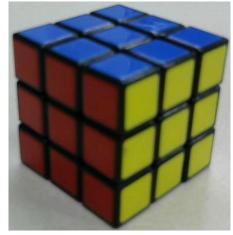



図4 三面を一度に映す様子

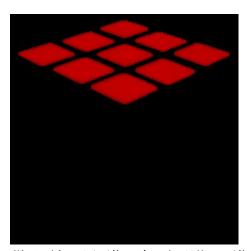


図5 カメラ画像からオレンジ色の面を検出する様子(左:原画像,右:処理後の画像)