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[PAPER  Special Section on Discrete Mathematics and Its Applications

On Reconfiguring Radial Trees

SUMMARY A linkage is a collection of line segments, called
bars, possibly joined at their ends, called joints. We consider
flattening a tree-like linkage, that is, a continuous motion of their
bars from an initial configuration to a final configuration looking
like a“straight line segment,” preserving the length of each bar
and not crossing any two bars. In this paper, we introduce a new
class of linkages, called “radial trees,” and show that there exists
a radial tree which cannot be flattened.

key words: linkage,reconfiguration,straightening,flattening,
monotone tree,radial tree.

1. Introduction

A linkage is a collection of line segments, called bars,
possibly joined at their ends, called joints. A reconfigu-
ration of a linkage is a continuous motion of their bars,
or equivalently a continuous motion of their joints, that
preserves the length of each bar. Applications of this
problem include robotics, hydraulic tube bending, and
the study of macromolecule folding[3], [7]. A linkage is
called planar if all bars are in the plane R? with no
intersection. A reconfiguration of a linkage is called
planar if all bars are in the plane during the motion,
and is called non-crossing if every two bars do not cross
each other during the motion. In this paper, we con-
sider only a planar reconfiguration of a planar linkage,
and we may omit the word “planar.” Furthermore, we
consider only a non-crossing reconfiguration, and we
may omit the word “non-crossing.”

For such planar reconfiguration problems, there is
a fundamental question: whether any polygonal chain
can be “straightened.” This problem has been known
as “The Carpenter’s Rule Problem” [3],[7],[8], and had
been open from the 1970’s to the 1990’s. However,
Connelly et al. have answered this question affirma-
tively: they showed that any polygonal chain can be
straightened, and they gave a method for straightening
polygonal chains[3]. Streinu gave another method for
straightening polygonal chains[8]. Both methods above
work well for “convexifying” closed polygonal chains
(polygons).

For a non-crossing planar reconfiguration of tree-
like linkages, several negative results are known, that
is, there exist trees which cannot be “flattened” [2], [4],
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Fig.1 A locked tree[2].

Fig.2 A monotone tree [5].

[6]. Figure 1 illustrates a tree which cannot be flat-
tened[2]. In Ref. [4], Connelly et al. gave a method for
proving that some trees are locked, that is, cannot be
flattened. On the other hand, an affirmative result was
reported for reconfiguring tree linkages: Kusakari et
al. showed that any “monotone tree” can be flattened,
and gave a method for flattening “monotone trees” [5].
Figure 2 illustrates a monotone tree[5]. Recently, the
complexity of flattening tree linkages has been studied:
Alt et al. showed that deciding lockability for trees is
PSPACE-complete[1]. However, there exist a few char-
acterizations of tree linkages which can be flattened.
Thus, it is desired to characterize a class of trees which
can be flattened.

In this paper, we define a new class of trees, called
“radially monotone trees” or “radial trees,” which is
a natural modification of the class of monotone trees,
and show that there exists a radial tree which cannot
be flattened. Figure 3 illustrates a locked radial tree.
An early version of the paper was presented at a con-
ference[6]. The remainder of this paper is organized
as follows. In Sect. 2, we give some preliminary def-
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Fig.3 An overview of a locked radial tree.

initions. In Sect. 3, we give a method to construct a
locked radial tree. In Sect. 4, we show that the tree con-
structed in Sect. 3 is simple and radial. In Sect. 5, we
present a theorem that the tree constructed in Sect. 3
cannot be flattened. In Sect. 6, we prove lemmas whose
proofs are omitted in Sect. 5. We conclude in Sect. 7.

2. Preliminaries

Let L = (J,B) denote a linkage consisting of a joint
set J and a bar set B. A structural graph of a linkage
L is denoted by G(L). An embedding of a structural
graph G(L) is called a configuration of linkage L. A
linkage L is called a (rooted) tree linkage or a (rooted)
tree if the structural graph G(L) is a (rooted) tree. Let
T = (J, B) be such a rooted tree linkage, and let r € J
be the root of T. A bar b € B is denoted by (js, ji) if
js € J is the parent of j; € J. For any joint j € J, a
bar emanating from j, b = (4, j'), is called a child bar
of joint j. A leaf is a joint having no child bar. For
any joint j € J — {r}, a bar entering to j, b = (§',j), is
called a parent bar of joint j. For any joint j € J —{r},
a parent bar of j is unique, and is denoted by 7. A joint
j € J is internal if j is neither the root nor a leaf. A
flattened configuration of a rooted tree linkage is one in
which the parent bar j of j makes angle 7 with each
child bar of j for every internal joint j, and the angle

between each pair of child bars of j is zero for every
non-leaf joint 5 € J. Flattening a tree linkage T is a
reconfiguration of 7" from an initial configuration to a
flattened configuration.

As an initial configuration of a tree linkage, we
first define a monotone tree [5]. A polygonal chain P
is x-monotone if the intersection of P and any vertical
line is either a single point or a line segment if the
intersection is not empty. A tree T is x-monotone if T
is a rooted tree and every root-leaf polygonal chain in
T is z-monotone. (See Fig. 2.)

Next, we define radial trees by slightly modifying
the definition of monotone trees. A polygonal chain P
is radially monotone for a point p (or, for short, radial
for a point p ) if the intersection of P and any circle
with the same center p is either a single point or empty.
A tree T is radially monotone or radial if T is a rooted
tree and every root-leaf polygonal chain in 7' is radially
monotone for the root . A radial tree is illustrated in
Fig. 3. On the other hand, the tree illustrated in Fig. 1
is not radial. Furthermore, every locked tree in [1],[2],
[4] is not radial. Note that an z-monotone tree may not
be radial, and a radial tree may not be z-monotone.

For three points p;, p2, p3 € R2, the angle /p;pops
is measured counterclockwise at point ps from the di-
rection of m to the direction of ITP;, and ranges in
[0,27). For two bars j1 = (jo,j1),J2 = (j1,j2) € B
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joined with joint j;, the angle Zjgj172 is denoted by
8(j1,72).- The slope s(j1) of bar j; = (jo,j1) is the an-
gle measured counterclockwise at the parent joint jo
from 42 direction to the direction joji, and ranges in
[0,27). The length of bar b € B is denoted by |b|. For
two points pi,p» € R2, the ray starting from p; and
passing through p is denoted by R(p1,p2). For a point
p € R? and a direction d € [0, 27), the ray starting from
p and going in the direction d is denoted by R,(d). The
circle centered at p € R? with radius a € R is denoted
by Op(a), and the circle with diameter p;p, is denoted

by O(p1, p2)-
3. Constructing a Locked Radial Tree

In this section, we construct a radial tree which can-
not be flattened, i.e., we construct a locked radial tree.
Figure 3 illustrates such a locked radial tree.

3.1 Outline of construction

In this subsection, we show how to construct a locked
radial tree. We first define some terms on a locked
radial tree. Figure 3 does not illustrate a strict locked
radial tree. Some bars should be overlapped and some
joints should be touched each other in a strict locked
radial tree.

The locked tree T' in Fig. 3 contains six congruent
components Cy, C1, ---, Cs, all of which are joined
at the root r of T. More generally, one can construct
a locked radial tree by such n(> 4) congruent compo-
nents, each of which is called a C; component and is
often denoted by C;, for ¢, 0 < i < n — 1. Each C;
component consists of three subcomponents: a V; com-
ponent, an L; component and a I'; component. These
Vi, L; and T'; components are often denoted by V;, L;
and I';, respectively. For each ¢, 0 < i < n—1, these V;,
L; and T'; are incident to the root r counterclockwise in
this order. Furthermore, L; is wrapped by V; and T},
as illustrated in Fig. 4.

The V; component has two bars 77 = (vg,v1) and
U3 = (v1,v9), joined with the internal joint v;, whose
angle 6(v1,vz) is equal to 5 + 7 (= § + &), and V; looks
like the letter “V”, as illustrated in Fig. 5.

The L; component has two bars I; = (lg,l;) and
Iy = (l4,15), joined with the internal joint Iy, whose
angle 6(I1,12) is equal to 27, and L; looks like the letter
“L”, as illustrated in Fig. 6.

The T; component has four bars 77 = (v0,71),
Y2 = (717’72)7 Y3 = (71773) and Vi = (73774)7 and two
internal joints 71,7ys. I'; looks like the letter “I'”, as
illustrated in Fig. 7. The angles Zy9y1y2, £Y0y17Y3 and
Z7077374 are 5, 5 and 37”, respectively.

3.2 Detail of construction

In this subsection, we focus on a single C; component,

Fig.4 Component Cj.

=,

Fig.5 Subcomponent V;.

™1,

Fig.6 Subcomponent L;.

=

Fig.7 Subcomponent I';.

and may often omit the index ¢ for simplicity. Further-
more, subcomponents, bars, and joints in C;_; or Cjy1
are designated by the corresponding objects with sym-
bol “—” or “+”, respectively. For example, T';_;, T;
and T';y; are denoted by '™, T and T't, respectively.
Moreover, the bar in I';;1 corresponding to the bar 77
in T; is denoted by 77+. We use similar notation for the
others. For two points p;,ps € R2, we denote by pip»
the line segment connecting p; and ps, and by |p1p2|
the length of the segment p;po.



We will define an initial configuration C} of the C;
component. A joint j € J in C; is denoted by j* in C7,
and a bar b € B in C; is denoted by b* in C;. For i,
0 <i<n-1, we draw all figures C; simultaneously
so that each pair of corresponding bars in consecutive
components makes angle 27”, and the index ¢ increases
counterclockwise.

Without loss of generality, we may assume that the
length |77*| is equal to 1, and the slope s(71*) is equal
to 7. Recall that we draw all bars corresponding to 7™
for all C'} simultaneously.

Then, for each i, 0 < i < n — 1, we draw line
segments 72* = {75 on each ray R,:(0) from the point
75, so that the angle 6(71",72") is equal to 3. We
choose the length |[72*| long enough, so that the ray
R(r,(y1)~*) intersects 72*. Thus, we choose the length
[72*| so as to satisfy [2*| > tan(2T).

Next, we choose a point v; on the bar (2)™*, so
that the following inequality holds:

1

sin(

2
ta,n( ) < [¥i*vi| < min{tan( Tj)

2 oM

n

The condition tan(Z) < |v{*v;| < tan(2F) ensures
that ~y; lies between points X and Y, which are de-
fined later. (See Fig. 8.) Moreover, the condition
tan(7) < v i < @ ensures that v} lies be-
tween points W and Y, which are also defined later.
(See Fig. 10.) Thus, inequality (1) ensures that ~f is
contained in both XY and WY.

One can find the point 3, on the bar 72*, satisfy-
ing Zyjv3r = 5. Actually, the point +3 is the intersec-
tion of the bar 3™ and the circle O(r,v;). Then, we
draw two line segments y;r and v;v;. (See Fig. 10.)

We finally drop a perpendicular from ~f to rvf (=
r(v4)™*), and let I be the foot of the perpendicular.

We construct C; on the figure C}. For a joint j
and a point p, the notation j = p means that joint j is
configured at point p. For a bar b and a line segment s,
the notation b = s also means that bar b is configured
at line segment s. The initial configuration of the C;
component is obtained as follows. (See Figures 4-7, and
10.)

For the V; component, let v; = v (= (74) %), v2 =
75, U1 = or* (= r0}), and 13 = 13" (= v{73).

For the L; component, let Iy = IT, lo = I5(= 77),
L=0"(=rl}),and b =1y (= 1113).

For the F component, y1 ={, Y2 =5, V3 = V3,
v =7E o), == ), B = (=),
Vs = Y3"(=7173), and 71 = 71" (= 7573)-

From this construction, one observes that |v1| =
o], [o2] = [02*], |l = Ill*l, llo] = Iz, 171] = 75",
172l = 172", [7s] = [757|, and [74] = [74”|- Note that all
lengths |73, 1], |l1| and |i2| are determined if |y;F 4]
is determined.
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Fig.8 Position of v1+.

4. The initial configuration

In this section, we show that the tree constructed in the
previous section is simple and radial. From now on, we
often do not distinguish the linkage and its configura-
tion, and may often omit the symbol “*.”

4.1 Simplicity

The slope s(%:7) is equal to 2Z and is smaller than 7 if
n > 4. The length |75*| is greater than tan 2™ from the
construction. Therefore, the ray R, (%) should cross
¥ t. Let X be the intersection point of the ray R, (5)
with 75+, and let Y be the intersection point of the ray
R, (m) with 73, as illustrated in Fig. 8.

Since the length |W+| is equal to 1 and ZXryj" is
equal to Zyiryih (= 27), the length |y X| is equal to
tan(27). Furthermore one can observe |vY| = tan(Z)
as follows since the hypotenuses are common and
|ry1] = |ryiT|(= 1), the two right triangles ArYy; and
ArY«; are congruent, and hence Zy,1Y = LYy =
. Thus, the point v; is contained in the open line
segment XY since the condition tan(Z) < |y ™| <
tan(2T) holds by construction. Therefore, one can ob-
serve that the two line segments yir(= (v1)*t*) and
Y75 (= 71*) can be drawn without (properly) crossing
any other line segments. Furthermore, one can eas-
ily observe that any pair of line segments in C} can
be drawn without (properly) crossing even if the pair
contains neither (v1)™* nor 7;*. Therefore, the tree
constructed in Sect. 3 is simple.

4.2 Radial Monotonicity

For any joint j € J, a subtree of T rooted at j is denoted
by T'(j)- A fan p1jp- is the set of points swept out by
a ray starting j moving counterclockwise from the di-
rection jp; to the direction jps, and contains points on
both R(j,p1) and R(j, p2). A fan p;jps may be denoted
by F;[01,0-], where 6; = Zrjp; and 0, = Zrjp,. (See
Fig. 9.)
The following lemmas hold.
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Fig.g Fan Fj [91,92].

Lemma 1: (i) A tree T = (J, B) is radial if and only
if, for any joint j € J, all points p (except for j)
contained in the subtree T'(j) are properly outside
of the circle O,(|rj|).

(ii) A tree T = (J, B) is radial if and only if, for any
joint j € J — {r}, every child bar b = (4,;') € B is

contained in the fan Fj[Z, 2T].
Proof. Both (i) and (ii) are obvious from the defini-
tion of radial trees. O

Note that, for every bar b = (r,j) emanating from
the root r, the slope s(b) can take any value in [0, 27)
even if T is radial.

Lemma 2: (i) The V; component is radial for the
root r.

(ii) The L; component is radial for the root r.

(iii) The I'; component is radial for the root r.

Proof. (i) One can easily observe that the angle
6(v1,7z) is greater than or equal to 5. (See Fig. 5.)
Thus, the bar v5 is contained in the fan F,, [3, 37],
and hence the path (r =)vgvive is radial by Lemma, 1
(ii).
(ii) From the construction of the L; component, the
3m

angle 6(l1,15) is equal to 2F. Thus, the bar I, is con-

tained in Fy,[Z,37], and hence the path (r =)lplyl, is
radial by Lemma 1 (ii).

(i) Since the I'; component has two leaves, it is suf-
ficient to show that both path P; and path P, are ra-
dial, where P; = yv172 and P, = 7py1737s. From
the construction, 8(71,%2) = 7, and hence the path P
is radial by Lemma 1 (ii). Furthermore, one observe
that the bar 73 is contained in F,,[Z, %] and the bar
s is contained in F.,[Z,37] since 6(71,73) = I and
ZY0Y37a = 3. Thus, by Lemma 1 (ii), the path P; is
radial. O

Every C; component is radial since all subcompo-
nents are radial by Lemma 2 above, and hence the tree
constructed in Sect. 3 is radial.

Fig. 10

Position of v3.

5. Lockability

In this section, we present a theorem that the tree con-
structed in Sect. 3 cannot be flattened. Note that the
method of the proof described in [4] cannot directly
apply to our tree.

For the initial configuration, the following lemma
holds.

Lemma 3: The following four inequalities hold:

(1) Zryly < 7,

(i) Zlimvy < 3,

(iii) Zryyys < 5, and
(iv) 473741);' < 3.

Proof. Since the sum Zryly + Zliyiye is equal
to Zryiva(= %), both (i) and (ii) immediately follow.
Moreover, since the sum Zrvyyys + Zy4ysr + Lysry, is
equal to 7 and the angle Zysy3r is equal to 7, (iii)
follows. Thus, we only prove (iv) below.

A quadrangle is a convex polygon with four ver-
tices A, B,C, D counterclockwise, and is denoted by
OABCD. For the quadrangle Orysysy;', it follows that
Lygysr = Zryfya(= ) from our construction of the
tree, and hence the sum Zv; v4v3 + Zy3r7; is equal to
7. Let Z and W be vertices of a rectangle Or ZWn;
such that the vertex Z is on 75 and the vertex W is on
¥2T, as illustrated in Fig. 10.

Then, the angle £+ Zr is equals to Zy;ry}" (= 27”),
since the equation ZZry, + Zv1 Zr = L Zryy + Zyiryy
= I holds. Therefore, the equation |y W| = |rZ| =
@ follows. The condition |y vih| < @ holds
from Eq. (1), and hence v; is on the open line segment
7 W. Since both O(r,v;) and O(r, W) have the same
chord rv; and the radius of O(r,v]") is smaller than the
radius of O(r, W), 3 lies between points y; and Z from
the construction. On the other hand, one can easily
observe that Zy3y,v5 = Zysryj since the equation
2y yays 4+ Lysyavy = 2yt yays + Zysry = m holds.



Thus, the angle Zvy3ysvy is equal to ZZry and is
smaller than 7. O
For each C;, the angle Zv;rv] is called the an-
gle of C; and may be denoted by ZC;. A reconfigura-
tion widens C; if it makes the angle ZC; increase, and
squeezes C; if it makes the angle ZC; decrease.

The following lemmas hold.

Lemma 4: There exists a widened C; component if
and only if there exists a squeezed C; component, where
0<i,7<n-—1andi#j.

n—1

Proof. Since the sum Z ZC; is equal to 2w, the
i=0

claim immediately follows. O

From Lemma 3 and 4, one can observe the fol-
lowing Lemma, holds, a proof of which will be given in
Sect. 6.

Lemma 5: (i) No reconfiguration can squeeze any C;
component.
(ii) No reconfiguration can widen any C; component.

Thus, the following theorem holds.

Theorem 1: There exists a radial tree which cannot
be flattened.

6. Proof of Lemma 5

In this section, we prove Lemma 5 whose proof is omit-
ted in Sect. 5.

We first give some additional notation. For any
point p € R2, the z-,y-coordinate of p is denoted by
x(p),y(p),respectively. Recall that the circle centered at
p € R? with radius a € R is denoted by Op(a). An inner
open region bounded by O,(a) is denoted by Op(a), and
an outer closed region bounded by Op(a) is denoted by
ép(a). Note that Op(a) does not include any points on
the boundary Op(a), but ép(a) does. An arc on Oy(a)
from a point ¢ to a point ¢’ counterclockwise is denoted
by Ap(a;q,q')-

Below, we regard the reconfiguration as a continu-
ous function on time ¢ € [0, 00), where the initial con-
figuration is the image of this reconfiguration at time
t = 0. The configuration of any object o at time ¢ is
denoted by o(t). For example, a configuration of joint
v1 at time ¢t is denoted by v; (). Moreover,C;(0) = C}
for every ¢, 0 <i < n — 1. We use similar notation for
the others.

We may assume, without loss of generality, that
the root r is located on the origin of the xy-plane, and
the bar 77 of Cj is fixed during any time ¢ € [0, c0) for
any reconfiguration. Thus, for any time ¢ € [0,00) of
any reconfiguration, the following equation holds:

v1(t) = v1(0)(=v1"). (2)
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O[I*(|fz|+ €)

Fig.11 Feasible position of Iy in time [0, §).

Therefore, the following equations also hold:

{ vo(t) = vo(0)(= v5 = 1),
v1(t) = v1(0)(= 1)

We shall prove some lemmas before proving
Lemma 5.

In order to prove these lemmas, we consider in-
finitely small motion of linkage. We say that a motion
of linkage L = (J, B) is infinitely small for ¢ > 0 and
t > 0if every joint j € J is contained in Oj(o) (€) during
period [0,t). Since every reconfiguration is continuous,
for any small real number € > 0, there exists a time
6 > 0 such that the reconfiguration is infinitely small
for ¢ and §, i.e., every joint j € J is properly con-
tained in Oj(o) (€) during period [0, §). Below, we only
consider such infinitely small motion for a sufficiently
small € and a corresponding short time §, so that no
critical event occur, like s(74(t)) — s(v2(t)) = 3.

A crescent region CR;(¢) is the region defined by
Oj+(€)NOji-(|7]), where j' is the parent joint of j. The
following lemmas hold.

Lemma 6: For any reconfiguration, the following
membership holds during any time ¢ € [0, 4):

Is(t) € CRy, (¢).

Proof. From the assumption of infinitely small mo-
tion, I5(t) is contained in Oy (g). Thus, we shall only
show that I,(t) € Ovl;( 3)).

Let If be the intersection of Oy (e) and O,(|l1])
satisfying s(rly) < s(rl¥). (See Fig. 11.) Since lo(=
r) is fixed for any reconfiguration and any time, I (t)
should lie on O,(|l1|). Moreover, the angle Zv; (t)rly (t)
should be greater than or equal to zero at any time t €
[0,6) from Eq.(2) and the condition of a non-crossing
reconfiguration. Thus, I;(¢) should lie on A,.(|l1|;1},1T)
during time ¢ € [0, §).

Furthermore, joint I3(t) should lie on Oy, ) (|l2]).

Let R be the region swept by a part of Oll(t)(|E|)
with center from I} to If on A,(|l1|;1},1F). Then, at
any time ¢t € [0,4), joint l3(¢) is contained in R.
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Fig. 12

One can easily observe that the region R contained in
Ol; (|l2|) n Ol; (|l2| + 6).
Thus,the claim holds. O

Lemma 7: For any reconfiguration, the following in-
equality holds at any time ¢ € [0,4):

Zviryi(t) > Zviry1(0).

Proof. By Eq.(2), it is sufficient to show that the
slope s(71(t)) is greater than or equal to 7.

Suppose for a contradiction that s(77(t)) is smaller
than % for some time ¢ € [0,6).

Let ~1(t)y3 be the upper tangent of point 7 (t)
and circle O,z (), and let F, (t) be a fan rvy;(t)y3, as
illustrated in Fig. 12.

Then, one can observe that l3(¢) should be con-
tained in F,, (t) from the condition of a non-crossing
reconfiguration since no critical events occur during
[0,6). On the other hand, by Lemma 6, l5(¢) should
be contained in C' Ry, (¢). We shall show below that the
equation F,, (t) N CRy,(¢) = 0 holds.

Let 7§ and 4}* be two intersections of O., (¢) and
Or(|71]) satisfying s(ry7) < s(ryi*), and let Tj; be the
tangent of Oy; (|l2) at 13, as illustrated in Fig. 12. Then,

T} is perpendicular to bar 15. Moreover, by Lemma
3, the angle Zryjl} is smaller than 7 and the angle
ZIiv1~5 is also smaller than 7, and hence the equation
F,,(0) N CRy,(¢) = {77} holds at time ¢t = 0. Fur-
thermore, 1 (¢) should lie on A, (|[71]; 75, ¥4 ), and hence
x(y1(¢)) is greater than zero since the slope s(71(t)) is
smaller than Z. This means that F, (t) N CRy,(e) =0

O

at time ¢t > 0.

Impossible motion of 7y;.

Lemma 8: For any reconfiguration, the following in-
equality holds during the time t € [0, §):

s(72(t)) = 0.

Proof. By the proof of Lemma, 7, one can observe that
71 (t) should lie on A,.(|71[; ¥, 77*)- The y-coordinate of
any point on A.(|71]; 75, v*) is smaller than or equal to
y(7v§)(=1). Moreover, 72(t) should be above vi whose
y-coordinate is equal to y(vy)(= 1) from Eq.(2), and
~2(t) should be contained in OAW; (¢). Thus, the claim
should hold from the condition of a non-crossing recon-

figuration. O

Lemma 9: For any reconfiguration, if 75 is fixed dur-
ing the time t € [0,d) then the following inequality
holds:

Lyirof (8) > Lyt (0),

Proof. Assume that 73 is fixed during the time ¢ €
[0,6) in this proof. Then, it is sufficient to show that
st (t)) > s(or1(0)).

Suppose for a contradiction s(v1T(t)) < s(v11(0))
for some time ¢t € [0,4). Let v be the intersection of
O+; () and O; (|73]) satisfying s(yivy3) > 0, as illus-
trated in Fig. 13.

Since 7 and #2* are fixed, ~s(¢) should lie on
A+ (731573,73)- Similarly to the proof of Lemma 6,
one can easily observe that the following membership
holds:

v4(t) € CR,,(e).
Let F+ (t) be the fan rv}(t)vy (t). Then, simi-
larly to the proof of Lemma 7, one can observe that
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Fig.13 Feasible position of 4 in time [0, ).

Fo+ (t) N CR,,(e) = B as follows.

the angle Zrv{*y} is smaller than I and the angle

Zv3y*v3* is also smaller than Z, and hence the equa-
tion F\+ (0)NCR,,(¢) = {vi} holds at time ¢t = 0. How-
ever, since the slope s(v77(t)) is smaller than s(v77*),
the equation F+ (t)NCR,, () = 0 follows at time ¢ > 0.

O

By Lemma 3,

We are now ready to prove Lemma 5.

Proof of Lemma 5 By Lemma 4, it is sufficient to
show only (i), i.e., we shall only show that no reconfig-
uration can squeeze any C; component.

By Lemma 9, the angle Zv}rv;(t) is greater than
or equal to Zvrv; (0) if 73 is fixed during the time ¢ €
[0, ). Moreover, since the inequality z(v1(t)) < z(97)
holds by Lemma 7 and the inequality s(33(¢)) > 0 holds
by Lemma 8, the z-coordinate z(3(t)) is smaller than
or equal to x(73). This means that v;"(¢) should be
contained in the region obtained by shifting CR,, (¢)
to the —x direction. Therefore, the angle Zv}rv}(t) is
greater than or equal to Zv}rv;" (0) even if v, (t) rotates
about the center r counterclockwise.

Thus, the claim holds. O

7. Conclusion

In this paper, we show that there exists a tree linkage
which is radially monotone and cannot be flattened.
The following future works remain:

(1) find new characterization of a class of tree linkages
which can be flattened,

(2) find a method for flattening a class of tree linkages
other than monotone trees, and

(3) find other necessary or sufficient conditions for
linkages to be reconfigured to some regular form,
say, straightened, flattened, or convexified,- - - .
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