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Abstract. A linkage is a collection of line segments, called bars, possibly
joined at their ends, called joints. Straightening a tree linkage is a con-
tinuous motion of their bars from an initial configuration to a “straight
line segment,” preserving the length of each bar and excepting crossing
any two bars. In this paper, we introduce a new class of linkages, called
“radial trees,” and show that there exists a radial tree which can not be
straightened.

1 Introduction

A linkage is a collection of line segments, called bars, possibly joined at
their ends, called joints. A linkage is called planar if all bars are in the
plane IR2 with no self-intersection. A reconfiguration of a linkage is a
continuous motion of their bars, or equivalently a continuous motion of
their joints, that preserves the length of each bar. A reconfiguration of
a linkage is called planar if all bars are in the plane during the motion,
and is called non-crossing if any two bars do not cross each other during
the motion. In this paper, we consider only a planar reconfiguration of
a planar linkage, and we may omit the word “planar.” Furthermore, we
consider only a non-crossing reconfiguration, and we may omit the word
“non-crossing.”

For such planar reconfiguration problems, there is a fundamental ques-
tion: whether any polygonal chain can be straightened. This problem had
been open from the 1970’s to the 1990’s. However, Connelly et al. have
answered this question affirmatively: they show that any polygonal chain
can be straightened [3]. On the other hand, a negative result is known for
a non-crossing planar reconfiguration of a tree linkage: there exists a tree
which cannot be “straightened” [1, 2]. Figure 1 illustrates a tree which
cannot be straightened [1, 2]. Recently, an affirmative result is reported
for reconfiguring tree linkages: Kusakari et al. show that any “monotone
tree” can be straightened, and give a method for straightening “mono-
tone trees”[4]. Figure 2 illustrates a monotone tree [4]. It is desired to
characterize the class of trees which can be straightened.
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Figure 1. Locked tree.
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Figure 2. Monotone tree.

In this paper, we define a new class of trees, called “radially monotone
trees” or “radial trees,” which is a natural modification of the class of
monotone trees, and show that there exists a radial tree which cannot
be straightened. The remainder of this paper is organized as follows. In
Section 2, we give some preliminary definitions. In Section 3, we give a
method to construct a locked radial tree. In Section 4, we show that the
initial tree constructed in Section 3 is simple and radial. In Section 5,
we show that the tree constructed in Section 3 can not be straightened.
Finally, we conclude in Section 6.

2 Preliminaries

In this section, we define terms and formally describe our problem.
Let L = (J,B) be a linkage consisting of a joint set J and a bar set B.

A structural graph of a linkage L is denoted by SG(L). An embedding of
a structural graph SG(L) is called a configuration of linkage L. A linkage
L is called a (rooted) tree linkage or a (rooted) tree if the structural graph
SG(L) is a (rooted) tree. Let T = (J,B) be such a rooted tree linkage,
and r ∈ J be the root of T . A bar b ∈ B is denoted by (js, jt) if js ∈ J
is the parent of jt ∈ J . For any joint j ∈ J , an incident bar b = (j, j′)
is called a child bar of joint j. A leaf is a joint having no child bar. For
any joint j ∈ J − {r}, an incident bar b = (j′, j) is called a parent bar
of joint j. For any joint j ∈ J − {r}, a parent bar of j is unique, and is
denoted by j̄. A joint j ∈ J is internal if j is neither the root nor a leaf. A
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straightened configuration of a rooted tree linkage is one in which, for any
internal joint j, the parent bar j̄ of j makes angle π with each child bar of
j, and the angle between each pair of child bars of j is zero. Straightening
a tree linkage T is a reconfiguration of T from an initial configuration to
a straightened configuration.

For an initial configuration of a tree linkage, we first describe a defi-
nition of a monotone tree [4]. A polygonal chain P is x-monotone if the
intersection of P and any vertical line is either a single point or a line seg-
ment if the intersection is not empty. A configured tree T is x-monotone
if T is a rooted tree and the polygonal chain in T from the root r to
any leaf is x-monotone. (See Figure 2.) Next, we define radial trees by
slightly modifying the definition of monotone trees. A polygonal chain
P is radially monotone (for a point p) or radial (for a point p) if the
intersection of P and any circle with the same center p is either a single
point or empty. A tree T is radially monotone or radial if T is a rooted
tree and the directed polygonal chain in T from the root r to any leaf is
radially monotone for the root r. A radial tree is illustrated in Figure 3.
Note that an x-monotone tree may not be radial, and a radial tree may
not be x-monotone.

r

Figure 3. Locked radial tree.
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For three points p1, p2, p3 ∈ IR2, the angle ∠p1p2p3 is measured coun-
terclockwise from the direction of −−→p2p1 to the direction of −−→p2p3, and ranges
in [0, 2π). For two bars j̄1 = (j0, j1), j̄2 = (j1, j2) ∈ B joined with joint j1,
the angle ∠j0j1j2 is denoted by θ(j̄1j̄2). The slope s(j̄1) of bar j̄1 = (j0, j1)
is the angle measured counterclockwise at the parent joint j0 from +x di-
rection to the direction

−−→
j0j1, and ranges in [0, 2π). Thus,the following

equation holds:

θ(j̄1j̄2) = s(j̄2) − s(j̄1) + 2π (mod 2π).

The length of bar b is denoted by |b|. For two points p1, p2 ∈ IR2, the
ray starting from p1 and passing through p2 is denoted by R(p1, p2). For
a point p ∈ IR2 and a direction d ∈ [0, 2π), the ray starting from p and
going in the direction d is denoted by Rp(d).

3 Constructing a Locked Radial Tree

In this section, we construct a radial tree which can not be straightened,
i.e., we construct a locked radial tree. Figure 3 illustrates such a locked
radial tree.

3.1 Overview

The locked tree T in Figure 3 contains six congruent components C0, C1,
· · · , C5, all of which are joined at the root r of T . More generally, one
can construct a locked radial tree by such n(> 4) congruent components,
each of which is called a Ci-component and is often denoted by Ci, for
i,0 ≤ i ≤ n−1. Each Ci-component consists of three subcomponents: a Vi-
component, an Li-component and a Γi-component. These Vi-component,
Li-component and Γi-component are often denoted by Vi,Li and Γi, re-
spectively. For each i,0 ≤ i ≤ n−1, these Vi,Li and Γi are incident to the
root r counterclockwise in this order. Furthermore, Li is wrapped by Vi

and Γi, as illustrated in Figure 4.
A Vi-component has two bars v̄1 = (v0, v1), v̄2 = (v1, v2) joined with

the internal joint v1 whose angle θ(v̄1v̄2) is nearly π
2 + π

n(= π
2 + π

6 ), and
looks like the letter “V”, as illustrated in Figure 5. An Li-component has
two bars l̄1 = (l0, l1), l̄2 = (l1, l2) joined with the internal joint l1 whose
angle θ(l̄1l̄2) is nearly 3π

2 , and looks like the letter “L”, as illustrated
in Figure 6. A Γi-component has four bars γ̄1 = (γ0, γ1), γ̄2 = (γ1, γ2),
γ̄3 = (γ1, γ3) and γ̄4 = (γ3, γ4), and two internal joints γ1, γ3, and looks
like the letter “Γ”, as illustrated in Figure 7. The angles ∠γ0γ1γ2, ∠γ0γ1γ3

and ∠γ0γ3γ4 are nearly π
2 ,π2 and 3π

2 , respectively.
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3.2 A detail of the construction

In this subsection, we focus on a single Ci-component, and may often
omit the index i for simplification. Furthermore, subcomponents, bars,
and joints in Ci−1 or Ci+1 are designated by the corresponding notation
with symbol “-” or “+”, respectively. For example, Γi−1, Γi and Γi+1

are denoted by Γ−, Γ and Γ+, respectively. Moreover, the bar in Γi+1

corresponding to the bar γ̄1 in Γi is denoted by γ̄1
+. We use similar

notations for the others. For two points p1, p2 ∈ IR2, we use p1p2 to
designate the line segment between p1 and p2, and |p1p2| to denote the
length of the segment p1p2.

We will draw a figure C∗
i containing the initial configuration of the Ci-

component. In order to designate each points or segments in C∗
i , we use

the notation adding symbol “*” to the corresponding notation of the joint
j ∈ J or the bar b ∈ B. Note that, for i, 0 ≤ i ≤ n−1, we draw all figures
C∗

i simultaneously, so that each pair of corresponding bars in consequent
components makes angle 2π

n , and the index i increases counterclockwise.
Without loss of generality, we may assume that the length |γ̄1

∗| = 1, and
the slope s(γ̄1

∗) = π
2 . Renote that we first draw all bars corresponding
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to γ̄1
∗ for all C∗

i simultaneously. Then, we draw a line segment γ̄2
∗ from

the point γ∗
1 with the slope s(γ̄2

∗), so that the angle θ(γ̄1
∗γ̄2

∗) = π
2 . We

choose the length |γ̄2
∗| long enough, so that the ray R(r, γ−∗

1 ) intersects
γ̄2

∗. Thus, we choose |γ̄2
∗| > tan(2π

n ). Next, we choose a point γ∗
4 on the

bar γ̄2
+∗, so that the following equation holds:

tan(
π

n
) < |γ+∗

1 γ∗
4 | < min{tan(

2π
n

),
1

sin(2π
n )

}. (1)

Then, we can find the point γ∗
3 on the bar γ̄2

∗ satisfying ∠rγ∗
3γ

∗
4 = 3π

2 . We
draw two line segments γ∗

4r and γ∗
4γ∗

3 . We finally drop a perpendicular
from γ∗

1 to rγ−∗
4 and the foot of the perpendicular is l∗1.

We construct Ci on the figure C∗
i . The notation j ≈ p denote that

joint j is configured sufficiently near point p, and the notation b ≈ s
also denote that bar b is configured sufficiently near line segment s. The
initial configuration of the Ci-component is obtained as follows:for the
Vi-components, let v̄1 ≈ v̄1

∗ = rγ−∗
4 and v̄2 ≈ v̄2

∗ = γ−∗
4 γ∗

2 ; for the Li-
components, let l̄1 ≈ l̄1

∗ = rl∗1 and l̄2 ≈ l̄2
∗ = l∗1γ∗

1 ; for the Γi-components,
γ̄1 ≈ γ̄1

∗ = rγ∗
1 , γ̄2 ≈ γ̄2

∗ = γ∗
1γ∗

2 , γ̄3 ≈ γ̄3
∗ = γ∗

1γ∗
3 and γ̄4 ≈ γ̄4

∗ = γ∗
3γ∗

4 .
(See Figure 4.)

4 The initial configuration

In this section, we show that the tree constructed in the previous section
is simple and radial. From now on, we often do not distinguish between
the linkage and its configuration, and may often omit the symbol “*.”

4.1 Simplicity

The slope s(γ̄2
+) = 2π

n < π
2 if n > 4, and hence the ray Rγ1(

π
2 ) must cross

γ̄2
+. Let X be the intersection point of the ray Rγ1(

π
2 ) with γ̄2

+, and let Y
the intersection point of the ray Rγ1(π) with γ̄2

+, as illustrated in Figure
8. Since |γ̄1

+| = 1 and ∠Xrγ+
1 = ∠γ1rγ

+
1 = 2π

n , |γ+
1 X| = tan(2π

n ). Fur-
thermore, one can observe that |γ+

1 Y | = tan(π
n) as follows: since the hy-

potenuses are common and |rγ1| = |rγ+
1 | = 1, two right triangles �rY γ1

and �rY γ+
1 are congruent, and hence ∠γ1rY = ∠Y rγ+

1 = π
n . By equa-

tion (1), tan(π
n) < |γ+∗

1 γ∗
4 | < tan(2π

n ), and hence the point γ∗
4 is contained

in the open line segment XY . Thus, one can observe that the two line
segments γ∗

4r(= v̄1
+∗) and γ∗

4γ∗
3(= γ̄4

∗) can be drawn without crossing
any other line segments. Furthermore, one can observe that any pair of
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line segments in C∗
i can be drawn without crossing even if the pair con-

tains neither v̄1
+∗ nor γ̄4

∗. Therefore, the tree constructed in Section 3 is
simple.

1

1

n
π

n
π

r

γ1
γ 2

+

γ
1

+

γ 2

v +

1

v +
2

γ
4

X

Y

Figure 8. Position of v+
1 .

4.2 Radial Monotonicity

For any joint j ∈ J , a subtree of T rooted at j is denoted by T (j). For
any configured joint j ∈ IR2, the circle with the center o passing through
j is denoted by Co(j). A wedge p1jp2 is the set of points swept out by
a ray starting j moving counterclockwise from the direction

−→
jp1 to the

direction
−→
jp2, and contains points on both R(j, p1) and R(j, p2). A wedge

p1jp2 may be denoted by wj[θ1, θ2], where θ1 = ∠rjp1, θ2 = ∠rjp2, and
r is the root of the tree T .

The following lemmas hold.

Lemma 1. (i) A tree T = (J,B) is radial if and only if, for any joint
j ∈ J , all joints j′ (except j) in the subtree T (j) are properly outside
of Cr(j).

(ii) A tree T = (J,B) is radial if and only if, for any joint j ∈ J − {r},
a child bar b = (j, j′) ∈ B is contained in the wedge wj [π2 , 3π

2 ].

Proof. Both (i) and (ii) are obvious from the definition of radial trees. ��
Note that, for any bar b = (r, j) incident to the root r, the slope s(b)

can be taken any values in [0, 2π) even if T is radial.

Lemma 2. (i) A Vi-component is radial for the root r.
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(ii) An Li-component is radial for the root r.
(iii) A Γi-component is radial monotone for the root r.

Proof. (i) One can easily observe that the angle θ(v̄1v̄2) ≥ π
2 . (See Figure

5.) Thus, v̄2 ⊆ wv1 [
π
2 , 3π

2 ], and hence the path (r =)v0v1v2 is radial by
Lemma 1 (ii).
(ii) From the construction of a Li-component, θ(l̄1 l̄2) = 3π

2 . Thus, l̄2 ⊆
wl1 [

π
2 , 3π

2 ], and hence the path (r =)l0l1l2 is radial by Lemma 1 (ii).
(iii) Since a Γi-component has two leaves, and hence it is sufficient
to show that both path P1 = γ0γ1γ2 and path P2 = γ0γ1γ3γ4 are ra-
dial. From the construction, θ(γ̄1γ̄2) = π

2 , and hence P1 is radial by
Lemma 1 (ii). Furthermore, one can observe that γ̄3 ⊆ wγ1 [

π
2 , 3π

2 ] and
γ̄4 ⊆ wγ3 [

π
2 , 3π

2 ] since θ(γ̄1γ̄3) = π
2 and ∠γ0γ3γ4 = 3π

2 . Thus, by Lemma 1
(ii), P2 is radial. ��

Any Ci-component is radial since all subcomponents are radial by
Lemma 2 above, and hence the tree constructed in Section 3 is radial.

5 Lockableness

In this section, we show that the tree constructed in Section 3 can not be
straightened.

For the sake of simplicity, we assume that |v̄1| = |v̄1
∗|, |v̄2| = |v̄2

∗|,
|l̄1| = |l̄1∗|, |l̄2| = |l̄2∗|, |γ̄1| = |γ̄1

∗|, |γ̄2| = |γ̄2
∗|, |γ̄3| = |γ̄3

∗| and |γ̄4| =
|γ̄4

∗|. Note that each pair of bars does not “properly cross” each other even
if lengths of bars are chosen by above way and the initial configuration of
Ci is embedded on C∗

i . Furthermore, all lengths |γ̄3|, |v̄1|, |l̄1| and |l̄2| are
determined if |γ+

1 γ4| is determined. Thus, there are no choice of lengths
for bars γ̄3, v̄1, l̄1 and l̄2.

For the initial configuration, the following lemma holds.

Lemma 3. The following four equations hold:

(i) ∠rγ1l1 < π
2 ,

(ii) ∠l1γ1γ2 < π
2 ,

(iii) ∠rγ4γ3 < π
2 ,and

(iv) ∠γ3γ4v
+
2 < π

2 .

Proof. Since ∠rγ1γ2 = ∠rγ1l1 + ∠l1γ1γ2 = π
2 , both (i) and (ii) immedi-

ately hold. Moreover, since ∠γ4γ3r = π
2 and ∠γ4γ3r+∠γ3rγ4 +∠rγ4γ3 =

π, (iii) holds. Thus,we only prove (iv) below.
For the quadrangle �rγ3γ4γ

+
1 , ∠γ4γ3r = ∠rγ+

1 γ4 = π
2 from our con-

struction of the tree, and hence ∠γ+
1 γ4γ3 + ∠γ3rγ

+
1 = π. Let Z and
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W be vertices of a rectangle �rZWγ+
1 such that the vertex Z is on γ̄2

and the vertex W is on γ̄+
2 , as illustrated in Figure 9. Then, ∠γ1Zr =

∠γ1rγ
+
1 = 2π

n , since ∠Zrγ1 + γ1Zr = ∠Zrγ1 + ∠γ1rγ
+
1 = π

2 . Therefore,
|γ+

1 W | = |rZ| = 1
sin( 2π

n
)
. From equation (1), |γ+

1 v+
1 | < 1

sin( 2π
n

)
, and hence

v+
1 is on the open line segment γ+

1 W . On the other hand, one can easily
observe that the length |γ+

1 v+
1 | increase if and only if the angle ∠γ3v

+
1 v+

2

increase. Thus, ∠γ3v
+
1 v+

2 < π
2 . ��

1

1

r

γ1 γ 2

+

γ
1

+

γ 2

v +

1

v +
2

γ
4

W

n

2π

n

2π
Z

Figure 9. Rectangle �rCDγ+
1 .

For each Ci, the angle ∠v1rγ4 (= ∠v1rv
+
1 ) is called the angle of Ci

and may be denoted by ∠Ci. A reconfiguration widen Ci if it makes the
angle ∠Ci increase, and squeeze Ci if it makes the angle ∠Ci decrease.

The following lemmas hold.

Lemma 4. There exists a widened Ci-component if and only if there ex-
ists a squeezed Cj-component, where 0 ≤ i, j ≤ n − 1 and i �= j.

Proof. Since
n−1∑

i=0

∠Ci = 2π, the claim immediately holds. ��

Lemma 5. (i) No reconfigurations can squeeze any Ci-component.
(ii) No reconfigurations can widen any Ci-component.

Proof. (sketch) By Lemma 4, it is sufficient to show only (i).
We may assume, without loss of generality, that the root r is located

on the origin of the xy-plane, and the bar v̄1 in Ci is fixed during the
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reconfiguration. Furthermore, we assume, for a contradiction, that Ci is
reconfigured to C ′

i such that

∠v′1rv
+
1
′
<

2π
n

= ∠v1rv
+
1 , (2)

where the objects (subcomponents, bars and joints) in the C ′
i-component

are denoted by notations adding the symbol “′” to the corresponding
notations of the objects in the Ci-component.

The bar l̄2 can not swing with the center l1 both clockwise and coun-
terclockwise since the angles ∠l1l2r and ∠l1l2γ2 is less than π

2 from Lemma
3 (i) and (ii). Furthermore, the bar γ̄4 can not swing with the center γ3

both clockwise and counterclockwise since the angles ∠rγ4γ3 and ∠γ3γ4v
+
2

is less than π
2 from Lemma 3 (iii) and (iv).

Thus, the only feasible motion is either expanding or reducing the
diagonal γ1γ4 of the reflex quadrangle �rγ1γ3γ4. Thus, the following two
cases may occur:

Case1: The diagonal γ′
1γ

′
4 of the reflex quadrangle �rγ′

1γ
′
3γ

′
4 is longer than

the diagonal γ1γ4 of the initial configuration of the reflex quadrangle
�rγ1γ3γ4; and

Case2: The diagonal γ′
1γ

′
4 of the reflex quadrangle �rγ′

1γ
′
3γ

′
4 is shorter

than the diagonal γ1γ4 of the initial configuration of the reflex quad-
rangle �rγ1γ3γ4.

Case1: Since |γ′
1γ

′
4| > |γ1γ4|, then ∠γ′

1rγ
′
4 > ∠γ1rγ4 by the cosine rule for

the triangle �rγ1γ4. Therefore, by equation (2), ∠v′1rγ′
1 < ∠v1rγ1. This

means that the distance between joint γ′
1 and bar j̄′1(= j̄1) is shorter than

the distance between joint γ1 and bar j̄1. However, the distance between
joint γ1 and bar j̄1 is equal to |l̄2|, and hence l̄2 must cross the path rγ1γ2,
contradicting a condition of the planar reconfiguration.
Case2: Since |γ′

1γ
′
4| < |γ1γ4|, then ∠γ′

1rγ
′
4 < ∠γ1rγ4 by the cosine rule for

the triangle �rγ1γ4, and then ∠γ′
4γ

′
3γ

′
1 < ∠γ4γ3γ1 by the cosine rule for

the triangle �γ3γ1γ4. Therefore, one can easily observe that ∠γ′
3γ

′
1γ

′
4 >

∠γ3γ1γ4 and ∠γ′
4γ

′
1r > ∠γ4γ1r. Thus, ∠rγ′

1γ
′
3 < rγ1γ3 = π

2 . However, the
angle ∠rγ1γ2 can not decrease from π

2 , since γ̄2 can not swing clockwise,
and hence γ̄3 must pass through γ̄2, contradicting a condition of the planar
reconfiguration. ��

Thus, the following theorem holds.

Theorem 1. There exists a radial tree which can not be straightened.
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6 Conclusion

In this paper, we show that there exists a tree linkage which is radially
monotone and can not be straighten. One of the future works is to find a
method for straightening tree linkages in other classes.
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