
Methods for Searching Mutual Visible Intervals on Moving Objects
Yoshiyuki Kusakari†, Yuta Sugimoto‡, Junichi Notoya†, and Masao Kasai†

† Department of Electronics and Information Systems,
Faculty of Systems Science and Technology, Akita Prefectural University

‡ Department of Electronics and Information Systems,
Graduate School of Systems Science and Technology, Akita Prefectural University

E-mail:{ kusakari,m07b007,notoya,kasai}@akita-pu.ac.jp

Abstract Computing visible information, such as a visible surface determination, is a significant prob-
lem and has been mainly studied in the fields of computationalgeometry and/or computer graphics[2, 4,
6, 10, 11, 13]. Furthermore, recently, one might be attracted to problems for dealing with continuously
moving objects in a geometrical space [1, 9, 12, 14]. In this paper, we propose two indexing methods,
called anMutual Visible Intervals search tree(MVI-tree) and anMutual Visible Intervals search list
(MVI-list). Using each index, one can efficiently find “mutual visible-surfaces” of two moving objects
from a query time. “Mutual visible surfaces” are subregionswhich are “visible” each other. We give
algorithms for constructing an MVI-tree and an MVI-list from a setM of two convex polygonsM0

with n0 vertices andM1 with n1 vertices, in the case where every convex polygon moves by uniform
motion. An MVI-tree ofM can be constructed in timeO(N log N) using spaceO(N) and an MVI-list
of M can be constructed in timeO(N) using spaceO(N), whereN is the total number of vertices and
N = n0 + n1. “Mutual visible intervals”,i.e. “one-dimensional mutual visible surfaces”, ofM at a
query time can be found in timeO(log N) using an MVI-tree or an MVI-list.
keyword Spatio-Temporal Index, Visible Surface Determination, Mutual Visible Intervals, Moving
Object, MVI-tree, MVI-list

1 Introduction

Given a set of geometrical objects, such as line segments,polytopes,· · · , and a view point,visible sur-
facesare parts of the given objects which are “visible” from the given view point [7]. The problems of
determining the visible surfaces have been mainly studied in the fields of computational geometry and/or
computer graphics [2, 4, 6, 10, 11, 13]. One can observe that these problems are equivalent to deter-
mine the “hidden surfaces” of objects, which are not visiblefrom the given view point. Especially, these
problems are significant for deleting “hidden surfaces” in the field of computer graphics. However, it
has been increasing in the fields other than computer graphics to deal with such problems of determining
“visible surfaces” or “hidden surfaces.” Thus, it is desired to develop the methods for managing such
visible information. For example, Notoyaet. al. propose a method for searching all “visible objects”
from many geometrical objects [10]. On the other hand, recently, much interest is attracted to methods
for dealing with “moving geometrical objects”, which change those geometrical information, such as
shapes, positions, and so on, depending on the time. We call such objectsmoving objects. There are
many study for storing or retrieving such moving objects [1,9, 12, 14]. For such problems, a represen-
tative method is computing a “scene” for every “frame”, where a scene is a geometrical configuration
including coordinates and a frame is a discrete time stamp inthe modeling world[7]. Recently, Taoet. al.
give an efficient method for storing and finding positions of objects from a query time if the trajectories
of moving objects are known[14]. Patelet. al. also give another efficient method for solving a similar
problem[12].

In this paper, we will present algorithms for constructing two data structures, if the trajectories of
moving objects are given. We assume that two moving objects are convex polygons in the planeR2 and
each objects moves by uniform motion, that is, moves along a straight line with a fixed velocity. We
also assume that each object does not transform its shape anddoes not rotate. For such situation, we

c0

vq

0

vel ()M0

vp

0

vel ()M1

M0

M1

vr

1

vs

1

VIM
0
[,]vq

1
vq

1

VIM
1
[,]vq

0
vq

0

c1

Figure 1: The mutual visible-intervals of two moving objects.

give two methods for searching a pair of one dimensional mutual visible surfaces, calledmutual visible
intervals, whose points are visible each other and which are two subregions of boundary of convex
polygons. Figure 1 illustrates mutual visible intervals. We present two indices (data structures), one is
called anmutual visible intervals search treeor anMVI-tree and the other is called anmutual visible
intervals search listor anMVI-list. One can efficiently find mutual visible intervals using an MVI-tree
or an MVI-list.

The remainder of this paper is organized as follows. In Section 2, we give some preliminary def-
initions. In Section 3 we show some properties of mutual visible intervals. In Section 4, we give an
indexing method using an MVI-tree. In Section 5, we present an indexing method using an MVI-list.
Finally, we conclude in Section 6.

2 Preliminaries

In this section, we define terms and notations, and formally describe our problem. We first give a static
model, and then extend it to a kinetic model.

2.1 Static Model

Let M = {M0,M1} be two convex polygons representing two moving objects. Foreachi ∈ {0, 1},
moving objectMi hasni vertices and is represented by the sequence of vertex list(vi

0, v
i
1, · · · , vi

ni−1)
counterclockwise, wherevi

j, 0 ≤ j < ni, is a vertex ofMi. Each edge ofMi is denoted byei
j =

(vi
j , v

i
j+1), 0 ≤ j < ni. We may simply denote byi for i (mod 2), and byj for j (mod ni). We denote

the total number of vertices ofM by N , that isN = n0 +n1. We assume that every edgeei
j of Mi is not

horizontal, that is, is not parallel to thex-axis. EachMi has arepresentative pointci ∈ Mi and a fixed
velocityvel(Mi). We denote thex-, y-coordinate of a pointp ∈ R

2 by x(p), y(p),respectively, and also
denote thex-,y-component of a 2-dimensional vectorv by x(v),y(v), respectively.

For a convex polygonM , the boundary ofM is denoted byB(M), and the proper interior ofM
is denoted byI(M), that isI(M) = M − B(M). A point q ∈ M is visible from an exterior point
p ∈ R

2 − M if the line segmentpq does not intersectI(B), that ispq ∩ I(M) = ∅. One can easily
observe that every visible pointq ∈ M is on the boundaryB(M) of M . Thevisible region from a pointp
is a maximal subregion ofB(M) which is visible from a pointp, and denoted byVp(M). Two pointsp0 ∈
M0 andp1 ∈ M1 aremutual visibleif the line segmentp0p1 does not intersect both interiors of convex

M

M

0vq

1vr

1vs
0vp

0

1

Figure 2: Four common tangents of two convex polygons.

polygons, that isp0p1 ∩ (I(M0) ∪ I(M1)) = ∅. A visible regionor visible interval ofM0 from M1 is a
maximal subregion ofM0 whose point is visible from some pointp1 ∈ M1, and denoted byVM1

(M0).
One can easily observe that a visible intervalVM1

(M0) is a continuous pathP = (v0
p, v

0
p+1, · · · , v0

q) of
B(M0). Thus, we may also denoteVM1

(M0) by V IM1
[v0

p, v
0
q]. Similarly, we denote a visible interval

of M1 from M0 by VM0
(M1) or V IM0

[v1
r , v

1
s]. A pair (V IM1

[v0
p, v

0
q], V IM0

[v1
r , v

1
s]) is called bymutual

visible intervalsof M={M0,M1} and denoted byMV I(M) = (p, q, r, s) for short, wherep, q ∈
{0, · · · , n0 − 1} andr, s ∈ {0, · · · , n1 − 1}. The mutual visible intervals determinationis a problem
for findingMV I(M) = (p, q, r, s) from a given non-intersecting convex polygonsM = {M0,M1}.

This problem can be solved by finding “common tangent lines.”A line l is called atangent lineof
M if M lies on the one side ofl andl passes through a vertex ofM , called atangent vertex, or an edge
of M , called atangent edge. A line l is called acommon tangent lineof M={M0,M1} if l is a tangent
line of bothM0 andM1. A common tangent linel of M={M0,M1} is callediso- common tangentif
bothM0 andM1 are contained in the same half plane defined byl, otherwisel is calledhetero common
tangent. Generally, there exist four common tangent lines, two of them are iso common tangent lines,
and other two are hetero common tangent lines. In Figure 2, iso-common tangent lines drawn by solid
lines, hetero-common tangent lines drawn by dashed lines. Using an ordinary method of computational
geometry, one can find these common tangent lines in timeO(N), thus one can find mutual visible
intervalsMV I(M) in linear time [6, 11, 13].

2.2 Kinetic Model

Let T = (−∞,∞) ⊂ R be a set of time. A moving objecto can be regarded as a subregion ofR
2 × T ,

and hence we call the spaceR
2 × T the kinetic spaceK. A trajectory of o is a subregion ofK taken

by o, where moving objectso may be points, line segments, lines,or polygons. For a timetf ∈ T , a
sceneof tf is a intersection of the kinetic spaceK and a plane oft = tf , and is represented by a map
SC : T → 2R

2

. For every objectso ⊆ K, the configuration ofo in sceneSC(t) is denoted byo(t). For
example, we denote a convex polygonM at a timet ∈ T by Mi(t) = (vi

0(t), . . . , v
i
ni−1(t)). We assume

M0(t)∩M1(t) = ∅ for every timet ∈ T . An initial configurationis a sceneSC(0) at timet = 0. Given
an initial configurationSC(0) containingM (0) = {M0(0),M1(0)}, two velocitiesvel(M0),vel(M1),
and a timet ∈ T , a determining kinetic MVI problemof M (t) = {M0(t),M1(t)} is to determine
kinetic mutual visible intervals(V IM1(t)[v

0
p(t), v

0
q (t)], V IM0(t)[v

1
r (t), v

1
s (t)]). We also denote kinetic

mutual visible intervals byMV I(M (t)) = (p, q, r, s) or MV I(t) = (p, q, r, s) for short.
One can solve this kinetic MVI determination problem using astraightforward algorithm as follows.

It first computes the sceneSC(t) of t ∈ T , then finds two iso-common tangent lines ofM0(t) and
M1(t), finally finds kinetic mutual visible intervalsMV I(t). EachMi(t) can clearly be computed from

M 1

M 0

(ct)1
M 1(ct)2

M 1(ct)m

P0

P0(C)1

Figure 3: The projected spaceP0 of moving objectMo.

Mi(0) and vel(Mi) in time O(ni), and hence a sceneSC(t) can be computed in timeO(N). Two
iso-common tangent lines can also be found in timeO(N), as mentioned before[6, 11, 13]. Thus,this
algorithm would take timeO(N). However, this time complexity is not optimal for the case where many
mutual visible intervals should be found for many time stamps. LetTF = (t1, t2, · · · , tF) ⊂ T be a
set of discrete time stamps. Given a initial configurationSC(0), two velocitiesvel(M0),vel(M1), and
a setTF = (t1, t2, · · · , tF) of discrete times, asearching kinetic MVI problemof M (t) is to find the
sequence(MV I(t1),MV I(t2), · · · ,MV I(tF)) of mutual visible intervals. This searching problem
can be also solved by using the above ordinary algorithm repeatedly, however such algorithm would take
time O(FN). On the other hand, we present faster methods to solve a searching problem. We propose
two data structures, called an MVI-tree and an MVI-list. We give an algorithm for constructing an MVI-
tree which runs in timeO(N log N). EachMV I(tf) can be found in timeO(log N) for each query time
tf ∈ TF using an MVI-tree. Thus, a searching MVI problem can be solved in timeO((N + F) log N)
using an MVI-tree. We also give an algorithm for constructing an MVI-list which runs in timeO(N).
EachMV I(tf) can be found in timeO(log N) for each query timetf ∈ TF using an MVI-list. Thus,
the searching MVI problem can be solved in timeO(N + F log N) using an MVI-list.

3 Properties of Mutual Visible Intervals

In this section, we show some properties of mutual visible intervals for constructing data structures.
We may assume that one of moving objectsMi(t) ∈M (t) has a zero vector0 as a velocityvel(Mi).

If both objectsMi(t) do not have zero vectors, we transformM (t) = {M0(t),M1(t)} to M ′(t) =
{M ′

0(t),M
′
1(t)} which are defined byM ′

0(0) = M0(0), M ′
1(0) = M1(0), vel(M ′

0) = vel(M0) −
vel(M0) = 0, andvel(M ′

1) = vel(M1) − vel(M0). It can be easily observed that each mutual visible
intervalsMV I(M (t)) has the same vertex set ofMV I(M ′(t)) in all time t ∈ T . This transformation
above is corresponding to shear the kinetic spaceK according−vel(M0). We call such a space astatic
space ofM0(t), and denote it byS0. A static spaceS1 of M1(t) is similarly defined. In each static
spaceSi of Mi(t), the objectsMi(t) is static, and hence is denoted byMi. Without loss of generality,
we assume thaty(vel(Mi)) = 0, x(vel(Mi)) = 0, y(vel(Mi+1)) = 0, andx(vel(Mi+1)) ≥ 0. A
projected spacePi of Mi(t) is two dimensional plane which is obtained by projecting the3-dimensional
static spaceSi of Mi(t) on the plane oft = 0. Figure 3 illustrates a projected spaceP0 of pentagonM0.
We denote byCi the trajectory of the representative pointci of Mi in the kinetic spaceK, by Pi(Ci+1)
the image of the trajectoryCi+1 in the projected spacePi. We assume thatPi(Ci+1) is horizontal and
y(ci) > y(ci+1(t)). In the projected spacePi, a line extended from each edgeei

j of Mi is calledextension
and denoted byl(ei

j) or lij . LetLi = {lij |0 ≤ j < ni}. Then, every extensionl(ei
j) ∈ Li is not horizontal

(a)

q q

p

p+

q

p

r

s

r

s

r

s
P C0 1()

t =

P C0 1() P C0 1()

M M0 0

(b) t = tp (c) t =

M0

εt -p t + εp

1p+ 1

Figure 4: Decreasing the visible interval ofM0 around the changing timetp.

p

q q

p p

rs rs rs

M0 M0 M0

P C0 1() P C0 1() P C0 1()

(a) (b) t = tq
(c)

q+ 1 q+ 1

q

t = t - q ε t = t + q
ε

Figure 5: Increasing the visible interval ofM0 around the changing timetq.

sinceei
j is not horizontal. For a non-horizontal linel, a left (right) plane ofl is the half plane divided by

l and has a pointp ∈ R
2 havingy-coordinatey(p) = 0 andx-coordinatex(p) = −∞ (x(p) = ∞). A

polygonM is on the left(right) of a linel if M is contained on the left (right) plane ofl. A non-horizontal
line l is on the left(right) of polygonM if M is on the right (left) ofl. Then, the following lemma holds.

Lemma 1 For any two timest, t′ ∈ T , (t < t′),

MV I(t) 6= MV I(t′)

if and only if the one of following conditions satisfies:

(p) There exists a timetp,t ≤ tp < t′, when an extensionl(e0
j) ∈ L0 becomes an iso-common tangent

on the left of bothM0 andM1(tp) in the projected spaceP0;

(q) There exists a timetq,t < tq ≤ t′, when an extensionl(e0
j) ∈ L0 becomes an iso-common tangent

on the right of bothM0 andM1(tq) in the projected spaceP0;

(r) There exists a timetr,t ≤ tr < t′, when an extensionl(e1
j) ∈ L1 becomes an iso-common tangent

on the left of bothM0(tr) andM1 in the projected spaceP1;

(s) There exists a timets,t < ts ≤ t′. when an extensionl(e1
j) ∈ L1 becomes an iso-common tangent

on the left ofM0(ts) andM1 in the projected spaceP1.

Proof One can easily observe that mutual visible intervalsMV I(t) changes only if an extension be-
comes an iso-common tangent ofMi andMi+1(t). Thus, we only show the sufficiency in below.
(p): Let l(e0

j) be an extension ofe0
j satisfying(p) at time tp, andMV I(tp) = (p, q, r, s) be the cor-

responding mutual visible intervals. See Figure 4. Then,p = j and MV I(tp) = (j, q, r, s) since
e0
j = (v0

j , v
0
j+1). Fort ∈ T , let lp(t) be the left iso-common tangent ofM0 andM1(t). Then, for a small

real numberε > 0, lp(tp − ε) touchesv0
j at timetp − ε, and henceMV I(tp − ε) = (j, q, r, s). On the

tct1 ct2 ctm

MVI 0 MVI 1 MVI 2 MVI MVIm-1 m

MVI

CT

Figure 6: An MVI-tree storesCT andMVI.

other hand, thelp(tp + ε) touches another vertexv0
j+1 of e0

j at timetp + ε, and henceMV I(tp + ε) =

(j + 1, q, r, s). Thus, the visible intervalV IM1
[v0

p, v
0
q] decrease and turns intoV IM1

[v0
p+1, v

0
q].

(q): Let l(e0
j) be an extension ofe0

j satisfying(q) at timetq, andMV I(tq) = (p, q, r, s) be the corre-
sponding mutual visible intervals. See Figure 5. Then,q = j + 1 andMV I(tq) = (p, j + 1, r, s) since
e0
j = (v0

j , v
0
j+1). For t ∈ T , let lq(t) be the right iso-common tangent ofM0 andM1(t). Then, for a

small real numberε > 0, lq(tq − ε) touchesv0
j at timetq − ε, and henceMV I(tq − ε) = (p, j, r, s). On

the other hand, thelq(tq +ε) touches another vertexv0
j+1 of e0

j at timetp +ε, and henceMV I(tp +ε) =

(p, j + 1, r, s). Thus, the visible intervalV IM1
[v0

p, v
0
q] increases and turns intoV IM1

[v0
p, v

0
q+1].

(r): The proof of this case is similar as the case(p). Ther changes and the intervalV IM0
decrease if

this case is occur.
(s): The proof of this case is similar as the case(s). Thes changes and intervalV IM0

increase if this
case is occur. 2

This lemma 1 implies that the sort of mutual visible intervals are discrete and finite. Thechanging
time is the time when mutual visible intervals change. We denote by CT ⊂ T the set of all of changing
times. LetCTp, CTq,CTr,CTs be the sets of changing times satisfying the condition of lemma 1(p),
(q), (r), (s),respectively, and letCT 0 = CTp ∪ CTq, CT 1 = CTr ∪ CTs. Note thatCT = CT 0 ∪
CT 1 = CTp ∪ CTq ∪ CTr ∪ CTs. We assign the total order toCT according to the natural order
of time. The ordered setCT is denoted by(ct1, ct2, · · · , ctm), wherem is the number of changing
times. For everyk,1 ≤ k < m, mutual visible intervalsMV I(t) is the same duringctk ≤ t < ctk+1.
Let MV Ik be the mutual visible intervalsMV I(t) during ctk ≤ t < ctk+1, let MV I0 be during
t < ct1, and letMV Im duringctm ≤ t. We denote the ordered set of mutual visible intervals byMVI
= (MV I0,MV I1, · · · ,MV Im).

4 MVI-tree

An mutual visible intervals search tree(MVI-tree) is a tree like data structures, which stores eachmutual
visible intervalsMV Ik ∈ MVI in leaves, stores each changing timectk ∈ CT in internal nodes, and
enable to searchMV I(t) for a query timet ∈ T . The structure of internal nodes is called byan index
part of an MVI-tree, and can be constructed as a balanced tree suchas a red-black tree[3]. Thus, every
MV I(t) can be found in timeO(log N) using an MVI-tree. Figure 6 illustrates an MVI-tree.

Now,we give an algorithmConstruct MVI-tree for constructing an MVI-tree as follows.

Algorithm 1 Construct MVI-tree

(T1) Find CT 0 = CTp ∪ CTq in the projected spaceP0 of M0;

(T2) Find CT 1 = CTr ∪ CTs in the projected spaceP1 of M1;

(T3) Find CT by mergingCT 0 andCT 1;

(T4) Calculate the initial mutual visible intervalsMV Ik0
= MV I(0) from the initial configurationM

(0) = {M0(0),M1(0)};

(T5) Calculate mutual visible intervalsMV Ik ∈ MVI from MV Ik−1 or MV Ik+1 for everyk,1 ≤
k < m;

(T6) Construct MVI-tree fromCT andMVI.

In below, we explain the detail ofConstruct MVI-tree.

4.1 Tangent Point search tree

EachCT i can be found by detecting tangent pointsvi+1
k of Mi+1(t) passed by the extensionlij ∈ Li.

Using this property, a straightforward algorithm is obtained as follows. For each extensionlij ∈ Li of

Mi, it finds tangent pointvi+1
k on Mi+1(t) by checking every vertex ofMi+1(t), and would take time

O(ni+1). Thus, it would take timeO(n0n1) = O(N2) for findingCT i.
Our first idea is to construct an intermediate date structurecalled atangent point search tree(TP -

tree) since many tangent points should be found. We denote a tangent point search tree ofMi+1(t) by
TP (Mi+1(t)). For two pointsp1, p2 ∈ R

2, theangleθ(−−→p1p2) of a vector−−→p1p2 is measured counterclock-
wise at a pointp1 from the+x-direction and ranges in[0, 2π). We may omit (mod 2π) since every
angle is ranges in[0, 2π). A normal vectorn(ei+1

j) of ei+1
j = (vi+1

j , vi+1
j+1) is a unit vector satisfying

θ(n(ei+1
j)) = θ(

−−−−−→
vi+1
j vi+1

j+1) −
π
2 . Similarly, anormal vectorn(l) of a line l is defined by two points

p1, p2 ∈ l. For eachei+1
j , a normal vectorn(ei+1

j) is perpendicular to an ordered edge
−−−−−→
vi+1
j vi+1

j+1 and

points outside ofMi+1(t). We assume, with out loss of generality, that the angleθ(n(ei+1
0)) of edgeei+1

0

is the minimum during all normal vectors of edgesei+1
j . Then, the following lemmas obviously holds.

Lemma 2 For each edgeei+1
j of Mi+1(t), the following inequality satisfies:

θ(n(ei+1
0)) < θ(n(ei+1

1)) < · · · < θ(n(ei+1
ni−1)).

Lemma 3 In projected spacePi, a non-horizontal linel passing through a vertexvi+1
k of Mi+1(t) is a

tangent line ofMi+1(t) if and only if either(i) or (ii) holds:

(i)
θ(n(ei+1

k−1)) ≤ θ(n(l)) ≤ θ(n(ei+1
k))

(ii)
θ(n(ei+1

k−1)) ≤ θ(n(l)) + π ≤ θ(n(ei+1
k))

.

By Lemma2, we can assign the total order to the set of edgesei+1
j of Mi+1(t) using the angle

θ(n(ei+1
j)). Thus, the tangent point search treeTP (Mi+1(t)) stores all edgesei+1

j of Mi+1(t) according

to the total order of the angles. We insert every edgeei+1
j , 0 ≤ j < ni+1, toTP (Mi+1(t)) by calculating

the angleθ(ei+1
j) as key. We constructTP (Mi+1(t)) as a balanced tree. UsingTP (Mi+1(t)), we can

find a tangent pointvi+1
k touched by extensionlij of Mi in timeO(log ni+1).

P C0 1()

M0

v
k’
1

vk
1

cp
cp

k

k’

l j
0()v

k
1 c1l j

0

()v
k’
1 c1l j

0

Figure 7: The relationship between an extension and a changing time.

4.2 The detail of Construct MVI-tree

We first show the detail of steps (T1)-(T3). We denote byl(−−→p1p2) the line translated froml according to
−−→p1p2. Then, the following algorithmFind CT i findsCT i.

Algorithm 2 Find CT i

(CT1) Construct a tangent point search treeTP (Mi+1(t)) of Mi+1(t);

(CT2) For each edgeei
j of Mi and its extensionlij ∈ Li, execute the following (CT3)-(CT5);

(CT3) Search onTP (Mi+1(t)) as keysθ(n(li+1
j)) and θ(n(li+1

j)) + π, and find tangent pointsvi+1
k

andvi+1
k′ , each of which is passed by a tangent line parallel tolij ;

(CT4) Calculate the crossing pointscpk = lij(
−−−−−→
vi+1
k ci+1)∩Pi(Ci+1) andcpk′ = lij(

−−−−−→
vi+1
k′ ci+1)∩Pi(Ci+1).

(See Figure 7.) Determine which crossing points above (cpk or cpk′) lies on the same side oflij as
the representative pointci, and letcp∗ be such crossing point;

(CT5) Calculate the changing timect when the representative pointci+1(t) reaches the cross pointcp∗,
then insertct to CT i.

For Mi andMi+1(t), there exist both iso-common tangent and hetero-common tangent. Therefore, for
each extensionlij, two tangent points are foundvi+1

k , vi+1
k′ by (CT3), one of which is the tangent point of

iso-common tangent and the other is one of hetero-common tangent. However, from the configuration of
the scene, we can determine which tangent point is one of the iso-common tangent. These determination
is done in (CT4). Figure 7 illustrates the relationship between an extension and a changing time. The
set of changing timeCT 0 = CTp ∪ CTq = (ct01, · · · , ct0m0

) can be found by executingFind CT 0 in
P0. Similarly, CT 1 = CTr ∪ CTs = (ct11, · · · , ct1m1

) can be found by executingFind CT 1 in P1. Each
of these sets has the total order, and hence the total orderedsetCT = (ct1, · · · , ctm) = CT0 ∪ CT1 is
obtained by mergingCT 0 andCT 1, wherem0 = |CT 0|, m1 = |CT 1|, m = |CT |(= m0 + m1). This
merging step can be done in timeO(|CT |) = O(N) [3].

In step (T4), iso-common tangents ofM0(0), M1(0) can be found by typical geometric algorithm
[6, 11, 13], and hence the initial mutual visible intervalsMV I(0) can be also found in timeO(N).

Finally, we give the detail of steps (T5),(T6). Each changing time ctk ∈ CT = (ct1, · · · , ctm)
is contained in the one of four subsetsCTp, CTq, CTr, CTs. These assignment can be found when
Find CT i is executed. Thus, by the proof of Lemma 1, each mutual visible intervalsMV Ik can be
calculating fromMV Ik−1 or MV Ik+1. For example, ifctk ∈ CTp thenMV Ik = MV I(ctk + ε) =
(p + 1, q, r, s) andMV Ik−1 = MV I(ctk − ε) = (p, q, r, s). Note thatMV Ik0

= MV I(0), and hence
the following inequality is satisfied:ctk0

≤ 0 ≤ ctk0+1. For any positive changing timesctk > ctk0
,

we can calculate every mutual visible intervalsMV I(ctk) from MV Ik−1, and hence we can obtain
mutual visible intervals for positive changing times fromMV Ik0

= MV I(0) to MV Im = MV I(∞).
Similarly, we can obtain mutual visible intervals for negative changing times fromMV Ik0

= MV I(0)
to MV I0 = MV I(−∞). Thus, we can obtainMVI = (MV I0, · · · ,MV Ik0

, · · · ,MV Im), where
MV I(−∞) = MV I0 MV Ik0

= MV I(0), andMV Im = MV I(∞)). The MVI-tree can be construct
by inserting everyct ∈ CT as internal nodes and everyMV Ik ∈MVI as leaf nodes.

4.3 Complexities

In this section, we analyze the complexity of the algorithmConstruct MVI-tree.
We first analyze the complexity of the algorithmFind CT i. A balanced tree withm nodes can

be constructed in timeO(m log m) by inserting every nodes to the empty tree, and it has height at most
O(log m) [3]. Thus, a tangent point search treeTP (Mi+1(t)) can be constructed in timeO(ni+1 log ni+1)
in (CT1). In (CT2)-(CT5), every tangent points can be found in timeO(log ni+1) sinceTP (Mi+1(t))
has height at mostO(log ni+1). Therefore, all tangent points ofCT i can be found in timeO(ni log ni+1)
since|Li| = ni. Therefore, the following lemma holds.

Lemma 4 The algorithmFind CT i runs in timeO(N log N) using spaceO(N).

We next analyze the complexity ofConstruct MVI-tree. The following lemma holds for the setCT

of changing time.

Lemma 5 The setCT has at mostO(N) elements.

Proof In projected spacePi, each extensionlij ∈ Li becomes an iso-common tangent ofMi andMi+1(t)

exactly once, and hence|CT i| = |Li| = ni. Thus,|CT | ≤ |CT 0| + |CT 1| = n0 + n1 = N . 2

By lemma 4 and lemma5, each set of changing timeCT 0 andCT 1 is found in timeO(N log N) in
(T1),(T2). The merging operation take linear time[3], and henceCT can be found in timeO(|CT |) =
O(N) in (T3). The initial mutual visible intervalsMV I(0) is calculated in timeO(N) in (T4) using
typical geometrical algorithm[6, 11, 13]. The setMVI of mutual visible intervals can be found fromCT

andMV I(0) in time O(N) in (T5). Thus, an MVI-tree can be constructed in time in timeO(N log N)
and has height at mostO(log N) since it is a balanced tree [3]. Therefore, the following theorem and
corollary holds.

Theorem 1 The algorithmConstruct MVI-tree constructs anMV I-tree in timeO(N log N) using
spaceO(N). For any query timet ∈ T , mutual visible intervalsMV I(t) can be found in timeO(log N)
using theMV I-tree.

Corollary 1 Using an MVI-tree, a searching problem of moving objectsM (t) and the time setTF can
be solved in timeO((F + N) log N) usingO(N) space, whereN = n0 + n1 andF = |TF |.

5 MVI-list

An mutual visible search listis a sequential data structures which stores pairs of changing timectk ∈ CT

and mutual visible intervalsMV Ik ∈ MVI. Each elements(ctk,MV Ik) of an MVI-list is stored
according to the total order of the changing time. Figure 8 illustrates an MVI-list.MV I(t) for a query
time t can be found by using “binary search algorithm” on the MVI-list, since an MVI-list stores each
element by the increasing order of time [3].

Now, we give an algorithmConstruct MVI-list for constructing MVI-list as follows.

ct1-(,MVI)0

0 m
(,MVI) (,MVI) (,MVI)m

1
ct1 k

k

Figure 8: An MVI-list.

Algorithm 3 Construct MVI-list

(L1) For everyu ∈ {p, q, r, s}, constructu-list;

(L2) ConstructMV I-list by mergingp- q- r- s-lists.

The main idea of this algorithm is to find every subsetsCTu, u ∈ {p, q, r, s}, of changing timeCT

separately. In below, we show only the algorithm for constructing p-list since the other three lists can be
similarly found.

5.1 Constructing p-list

We first show additional lemmas for constructingp-list.

Lemma 6 Let v0
a be the vertex ofM0 with maximumy-coordinate, andv0

b be the vertex ofM0 with
minimumx-coordinate. Then,MV I(−∞) = (a, q, r, s), MV I(∞) = (b, q, r, s), and every vertexv0

p is
contained in the path fromv0

a to v0
b onB(M0) during t ∈ T = (−∞,∞).

Proof One can easily observe that the angle of the left iso-common tangent line ranges in(π, 2π) since
M0 lies aboveP0(C1). Furthermore, obviously, the vertexv0

a is passed by the tangent linel0a with
the angleθ(l0a) = π when t = −∞, and hencev0

a is one of the terminal of mutual visible intervals
MV I(−∞). Similarly, the vertexv0

b is passed by the tangent linel0b with the angleθ(l0b) = 2π when
t = ∞. Moreover, everyv0

p clearly appears betweenv0
a andv0

b . Thus, this lemma holds. 2

For eachv0
p ande0

p = (v0
p, v

0
p+1), a ≤ p ≤ b, let ct(v0

p) be the changing time when the extension
l(e0

p) ∈ L0 becomes the left iso-common tangent ofM0 andM1(t). Then, the following lemma satisfies.

Lemma 7 For each vertexv0
p in the path(v0

a, · · · , v0
p, · · · , v0

b), each changing timesct(v0
p) increase

according to increasing indexp froma to b, that is, the setCTp = (ct(v0
a), · · · , ct(v0

p), · · · , ct(v0
b)) has

the natural order of time.

Proof For eachp, a ≤ p ≤ b, the angleθ(e0
p) increase according to increasing indexp sinceM0 is a

convex polygon. Therefore, each extensionl(e0
p) intersects the horizontal lineP0(C1) by the increasing

order of thex-coordinate. Moreover, one can easily observe that every changing time appears by the
increasing order. See Figure 9. 2

By Lemmas 6 and 7, we show the algorithmConstruct p-list as follows.

Algorithm 4 Construct p-list

(P1) Find the vertexv0
a of M0 with the maximumy-coordinate, and find the vertexv0

b of M0 with the
minimumy-coordinate;

(P2) For eachp, a ≤ p ≤ b, repeat the following (P3)-(P5);

(P3) Find the tangent vertexv1
s of M1(t) touched by the extensionl(e0

p) from left, then calculate the
corresponding changing timect(v0

p) from a left iso-common tangent linev0
pv

1
s ;

(P4) Add the pair(ct(v0
p), v0

p) to the last ofp-list.

M 1

M 0

(ct)1 M 1(ct)2

M 1(ct)3

P0

P0(C)1

t

p1
v

p1
v

p2
v

p2
v

p3
v

p4
v

p3
v p4

v

va=

v= b

va= v= b

Figure 9: Constructing p-list.

5.2 Complexities

In this subsection, we analyze the complexity of the algorithm Construct MVI-list.
We first analyze the complexity of the algorithmConstruct p-list. One can easily find the vertex

with maximum or minimumy-coordinate in timeO(N), and hence (P1) can be executed in timeO(N).
Every v0

p can be found by the previous edgee0
p−1 = (v0

p−1, v
0
p) of M0. Furthermore, one can easily

observe that the tangent vertexv1
s of the left iso-common tangent linev0

pv
1
s appears counterclockwise

in the vertex list ofM1(t). Thus, by Lemma 7, the changing timect(v0
p) can be found in timeO(1) in

(P3). Thus, (P2)-(P4) can be executed in linear time in total. Thus, the algorithmConstruct p-list can
be executed in timeO(N).

For the algorithmConstruct MVI-list, (L1) can be done by executingConstruct u-list for every
u ∈ {p, q, r, s}, and hence would take timeO(N). In (L2), the four-way merging technique should be
used, and this can be done in timeO(N) [3].

Thus, the following theorem and corollary holds.

Theorem 2 The algorithmConstruct MVI-list constructs anMV I-list in timeO(N) using spaceO(N).
For any query timet ∈ T , the mutual visible intervalsMV I(t) can be found in timeO(log N) using the
MV I-list.

Corollary 2 Using theMV I-list, a searching problem of moving objectsM (t) and the time setTF can
be solved in timeO(N + F log N) usingO(N) space, whereN = n0 + n1 andF = |TF |.

6 Conclusion

In this paper, we give several efficient methods for searching the mutual visible intervals for the case
where the trajectories of moving objects are known. We give two data structures, called an MVI-tree
and an MVI-list, if two convex polygonsM0,M1 moves by uniform motion. The algorithmConstruct
MVI-tree constructs an MVI-tree in timeO(N log N) using spaceO(N). Each mutual visible intervals
of an query timet can be found in timeO(log N) by using an MVI-tree, that is, by tracing a root-leaf
path on the MVI-tree. The algorithmConstruct MVI-list constructs an MVI-tree in linear time using

linear space. Each mutual visible intervals of an query timet can be found in timeO(log N) using an
MVI-list, that is by using the binary search algorithm on theMVI-list.

The following future works remain:

(1) develop methods for searching mutual visible surfaces of two convex polytopes in the space of three
or more degree dimension,

(2) develop methods for searching mutual visible surfaces of moving objects which may moves by non-
uniform motion, and

(3) develop methods pairs of mutual visible surfaces among three or more moving objects,. . . .

References

[1] P. K. Agarwal, L. J. Guibas, H. Edelsbrunner, J. Erickson, M.Isard, S. Har-peled, J. Hershberger,
C. Jensen, L. Kavraki, P. Koehl, M. Lin, D. Manocha, D.Metaxas, B. Mirtich, and D. Mount, “Alo-
gorithmic Issues in Modeling Motion, ” ACM computing Surveys,34, 4, pp.550–572(2002).

[2] J. Bittner, “Hierachical Techniques for Visibility Determination, ” Postgraduate Study Report DC-
PSR-99-05, Czech Technical University, (1999).

[3] T. H. Cormen, C.E. Leiserson, and R.L. Rivest, Intoroduction to Algorithms, MIT press, Cambridge,
MA(1990).

[4] S.Coorg and S.Teller, “Real-time occlusion culling for models with large occluders, ” SI3D:Proc. of
Symp. on Interactive 3D graphics, New York, NY, USA, ACM Press, pp.83–ff(1997).

[5] R. Diestel,Graph Theory,Springer-Verlag,1997.

[6] M. deBerg, M. van Kreveld, M. Overmars, and O.Schwarzkopf, Computational Geometry Algo-
rithms and Applications, Springer-Verlag(1997).

[7] J. D. Foley, A. van Dan, S. K. Feiner, and J.F. Hughes, Computer graphics:principles and practice
2nd ed. in C, Addison-Wesley (1991).

[8] D. Gordon and S.Chen, “Front-to-back display of BSP trees, ”IEEE Computer Graphics and Appli-
cations,11, 5, pp.79–85(1991).

[9] Y.kusakari, Y.Sugimoto, J.Notoya, and M.Kasai, “A Method for Searching Mutual Visible-Intervals
on Moving Objects,” Proc. of DEWS 2006, 4B-oi3,(2006)(in Japanese).

[10] J.Notoya, Y.Sugimoto, Y.Kusakari, and M.Kasai, “Visibility Search for Spatial Database System,”
DBSJ Letters,4, 2, pp.9–12(2005).(in Japanese).

[11] J. O’Rourke, Computational Geometry in C, Cambridge, (1998).

[12] J. M. Patel, Y. Chen, and V. P. Chakka, “STRIPES: An Efficient Index for Predicated Trajectories,
” Proc. of SIGMOD Conference 2004, Paris, France pp. 637-646(2004).

[13] F.P. Preparata, M.I. Shamos, Computational Geometry:An Introduction, Springer-Verlag, 1985.

[14] Y. Tao, D. Papadias, and J. Sun, “The TPR∗-Tree: An Optimized Spatio-Temporal Access Method
for Predictive Queries, ” VLDB, pp.790–801 (2003).

