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Abstract Computing visible information, such as a visible surfacgeduination, is a significant prob-
lem and has been mainly studied in the fields of computatigeaimetry and/or computer graphics[2, 4,
6, 10, 11, 13]. Furthermore, recently, one might be attchtigoroblems for dealing with continuously
moving objects in a geometrical space [1, 9, 12, 14]. In thiggp, we propose two indexing methods,
called anMutual Visible Intervals search tregMVI-tree) and anMutual Visible Intervals search list
(MVI-list). Using each index, one can efficiently find “mutuasible-surfaces” of two moving objects
from a query time. “Mutual visible surfaces” are subregioviich are “visible” each other. We give
algorithms for constructing an MVI-tree and an MVI-list froa setM of two convex polygons\/,
with ng vertices and\V/; with n; vertices, in the case where every convex polygon moves grami
motion. An MVI-tree of M can be constructed in tim@(N log N) using spac&(N) and an MVI-list

of M can be constructed in tim@ (V') using spac& (N ), whereN is the total number of vertices and
N = ng + nq. “Mutual visible intervals”,i.e. “one-dimensional mutual visible surfaces”, 6 at a
query time can be found in tim@(log N') using an MVI-tree or an MVI-list.

keyword Spatio-Temporal Index, Visible Surface Determination,tivlih Visible Intervals, Moving
Object, MVI-tree, MVI-list

1 Introduction

Given a set of geometrical objects, such as line segmehtgpes; - -, and a view pointyisible sur-
facesare parts of the given objects which are “visible” from theegi view point [7]. The problems of
determining the visible surfaces have been mainly studi¢ld fields of computational geometry and/or
computer graphics [2, 4, 6, 10, 11, 13]. One can observe liegetproblems are equivalent to deter-
mine the “hidden surfaces” of objects, which are not visfioben the given view point. Especially, these
problems are significant for deleting “hidden surfaces’hia field of computer graphics. However, it
has been increasing in the fields other than computer grajpiateal with such problems of determining
“visible surfaces” or “hidden surfaces.” Thus, it is dedite develop the methods for managing such
visible information. For example, Notoyet. al. propose a method for searching all “visible objects”
from many geometrical objects [10]. On the other hand, rbgemuch interest is attracted to methods
for dealing with “moving geometrical objects”, which chanthose geometrical information, such as
shapes, positions, and so on, depending on the time. Weutdll gbjectamoving objects There are
many study for storing or retrieving such moving objects9112, 14]. For such problems, a represen-
tative method is computing a “scene” for every “frame”, wder scene is a geometrical configuration
including coordinates and a frame is a discrete time startigeimodeling world[7]. Recently, Taat. al.
give an efficient method for storing and finding positions bjeats from a query time if the trajectories
of moving objects are known[14]. Patet. al. also give another efficient method for solving a similar
problem[12].

In this paper, we will present algorithms for constructimgp tdata structures, if the trajectories of
moving objects are given. We assume that two moving objeets@nvex polygons in the plaf®’ and
each objects moves by uniform motion, that is, moves alongagght line with a fixed velocity. We
also assume that each object does not transform its shapeoasdnot rotate. For such situation, we



Figure 1: The mutual visible-intervals of two moving obgct

give two methods for searching a pair of one dimensional alutisible surfaces, callechutual visible
intervals whose points are visible each other and which are two sidiregf boundary of convex
polygons. Figure 1 illustrates mutual visible intervalse Wfesent two indices (data structures), one is
called anmutual visible intervals search trem anMVI-tree and the other is called amutual visible
intervals search lisbr anMVI-list. One can efficiently find mutual visible intervals using an Mkée

or an MVI-list.

The remainder of this paper is organized as follows. In $ac®, we give some preliminary def-
initions. In Section 3 we show some properties of mutualblésintervals. In Section 4, we give an
indexing method using an MVI-tree. In Section 5, we presenindexing method using an MVI-list.
Finally, we conclude in Section 6.

2 Preliminaries

In this section, we define terms and notations, and formadgcdbe our problem. We first give a static
model, and then extend it to a kinetic model.

2.1 Static Modél

Let M = {My, M;} be two convex polygons representing two moving objects. daahi € {0, 1},
moving objectM; hasn; vertices and is represented by the sequence of vertefjjsty, - - - , v}, _;)
counterclockwise, Wherej-, 0 < j < ny, is a vertex ofM;. Each edge of\/; is denoted bysg'- =
(v},v5,1), 0 < j < n;. We may simply denote bifor i (mod 2), and byj for j (mod n;). We denote
the total number of vertices o¥1 by N, thatisN = ng + n1. We assume that every ed@eof M; is not
horizontal, that is, is not parallel to theaxis. Each)M; has arepresentative point; € M; and a fixed
velocityvel (M;). We denote the-, y-coordinate of a poinp € R? by z(p), y(p),respectively, and also
denote ther-,y-component of a 2-dimensional vectoby = (v),y(v), respectively.

For a convex polygonV/, the boundary of\/ is denoted byB(M), and the proper interior af/
is denoted byl (M), that is/(M) = M — B(M). A pointg € M is visible from an exterior point
p € R? — M if the line segmenpg does not interseck(B), that ispg N I(M) = (. One can easily
observe that every visible poigte M is on the boundary (M) of M. Thevisible region from a poinp
is a maximal subregion dB (/) which is visible from a poinp, and denoted by, (/). Two pointsp, €
My andp; € M7 aremutual visibleif the line segmenpypy does not intersect both interiors of convex



Figure 2: Four common tangents of two convex polygons.

polygons, that i®opr N (I(Moy) U I(My)) = 0. A visible regionor visible interval ofM, from M is a
maximal subregion of\/; whose point is visible from some poipt € M;, and denoted by, (My).

One can easily observe that a visible interial, (My) is a continuous pati® = (v, v), ,,--- ,v}) of
B(Mjy). Thus, we may also denoté,, (Mo) by VI, [v),v0]. Similarly, we denote a visible interval

of My from Mg by Vi, (My) or VI [v}, vi]. Apair (VIa, [v), 00, VIag[v), vl]) is called bymutual
visible intervalsof M={M,, M;} and denoted bW/ VI( M ) = (p,q,r,s) for short, wherep,q €
{0,--- ,no — 1} andr,s € {0,--- ,ny — 1}. The mutual visible intervals determinatias a problem
for finding MV I( M) = (p, q,r, s) from a given non-intersecting convex polygat$ = { M, M }.

This problem can be solved by finding “common tangent lindsline [ is called atangent lineof
M it M lies on the one side dfand/ passes through a vertex bf, called atangent vertexor an edge
of M, called atangent edgeA line [ is called acommon tangent linef M={M,, M, } if [ is a tangent
line of both M, and M;. A common tangent liné of M={M,, M, } is callediso- common tangerit
both M, and M; are contained in the same half plane defined, mtherwisel is calledhetero common
tangent Generally, there exist four common tangent lines, two efrirare iso common tangent lines,
and other two are hetero common tangent lines. In FigureoZ;asnmon tangent lines drawn by solid
lines, hetero-common tangent lines drawn by dashed linegiglan ordinary method of computational
geometry, one can find these common tangent lines in &W), thus one can find mutual visible
intervalsMVI( M ) in linear time [6, 11, 13].

2.2 Kinetic Mode

Let T = (—o0,00) C R be a set of time. A moving objeetcan be regarded as a subregiorRdfx T,
and hence we call the spaB& x T the kinetic spacelC. A trajectory of o is a subregion ofC taken
by o, where moving objects may be points, line segments, lines,or polygons. For atime T, a
sceneof ¢, is a intersection of the kinetic spagéand a plane of = ¢y, and is represented by a map
SC : T — 2%, For every objects C K, the configuration ob in sceneSC/(t) is denoted by(t). For
example, we denote a convex polygbhat a timet € 1" by M;(t) = (vh(t), ..., v}, _,(t)). We assume
My(t) N M,y (t) = 0 for every timet € T. Aninitial configurationis a scene&sC'(0) at timet = 0. Given
an initial configurationSC'(0) containingM (0) = {M;(0), M1(0)}, two velocitiesvel (M ),vel (M),
and a timet € T, adetermining kinetic MVI problerof M (t) = {My(t), M;(t)} is to determine
kinetic mutual visible interval§V Iy, 4 [v9(t), v (£)], V Iy s [vr (£), vi(t)]). We also denote kinetic
mutual visible intervals by VI( M (t)) = (p,q,r,s) or MVI(t) = (p,q,r,s) for short.

One can solve this kinetic MVI determination problem usirgiraightforward algorithm as follows.
It first computes the scengC(t) of t € T, then finds two iso-common tangent lines [ (¢) and
M (t), finally finds kinetic mutual visible intervald/V'I(¢). EachM;(t) can clearly be computed from
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Figure 3: The projected spaég of moving objectM,,.

M;(0) andwvel(M;) in time O(n;), and hence a scen®C(t) can be computed in tim&(N). Two
iso-common tangent lines can also be found in tiEV), as mentioned before[6, 11, 13]. Thus,this
algorithm would take tim& (). However, this time complexity is not optimal for the caseenehmany
mutual visible intervals should be found for many time stampetTr = (t1,t2,--- ,tp) C T be a
set of discrete time stamps. Given a initial configuratfai(0), two velocitiesvel(My),vel (M, ), and
asetTr = (t1,tq, -+ ,tp) oOf discrete times, aearching kinetic MVI problerof M (¢) is to find the
sequencg MV I(t1), MV I(t2),---, MV I(tr)) of mutual visible intervals. This searching problem
can be also solved by using the above ordinary algorithmatepéy, however such algorithm would take
time O(FN). On the other hand, we present faster methods to solve ehggaroblem. We propose
two data structures, called an MVI-tree and an MVI-list. Vileegan algorithm for constructing an MVI-
tree which runs in tim& (N log N). EachM V' I(t;) can be found in timé&(log N) for each query time
tr € Tr using an MVI-tree. Thus, a searching MVI problem can be sbivetime O((N + F)log N)
using an MVI-tree. We also give an algorithm for construgtan MVI-list which runs in timeO(NV).
EachMVI(ty) can be found in tim&(log N) for each query time; € Tr using an MVI-list. Thus,
the searching MVI problem can be solved in tiMéN + F'log V) using an MVI-list.

3 Propertiesof Mutual Visible Intervals

In this section, we show some properties of mutual visiblerirals for constructing data structures.
We may assume that one of moving objebfs¢) € M (t) has a zero vectd as a velocityvel (M;).
If both objectsM;(¢) do not have zero vectors, we transfomt (t) = {My(t), M1(t)} to M '(t) =
{M{(¢t), Mi(t)} which are defined by(0) = My(0), M(0) = M;(0), vel(M})) = vel(My) —
vel(My) = 0, andvel(M]) = vel(M;) — vel(My). It can be easily observed that each mutual visible
intervalsM VI( M (t)) has the same vertex setbfVI( M'(t)) in alltimet € T. This transformation
above is corresponding to shear the kinetic sga@ecording—vel (M;). We call such a spacestatic
space ofM,(t), and denote it byS,. A static spaceS; of M;(¢) is similarly defined. In each static
spaceS; of M;(t), the objects\/;(¢) is stati and hence is denoted By;. Without loss of generality,
we assume thag(vel(M;)) = 0, z(vel(M;)) = 0, y(vel(M;y1)) = 0, andz(vel(M;+1)) > 0. A
projected spacé; of M;(t) is two dimensional plane which is obtained by projecting3katimensional
static space; of M;(t) on the plane of = 0. Figure 3 illustrates a projected spa@gof pentagon/.
We denote byC; the trajectory of the representative poinof M, in the kinetic spacéC, by P;(C;y1)
the image of the trajector§;,, in the projected spacB,. We assume tha®;(C;,1) is horizontal and
y(ci) > y(cir1(t)). Inthe projected spadg, a line extended from each ed@’eof M; is calledextension

and denoted by(¢’) orl’. Let L' = {I}|0 < j < n;}. Then, every extensialie’) € L' is not horizontal



, M,

/
/

] @_’ 0(C1 ) ”s@_’ 0o(C1) @_’ 0(C1)

’

@t =t,-e  (0)t =t, © t=ty+e
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Figure 5: Increasing the visible interval 8f, around the changing timsg.

sincee§ is not horizontal. For a non-horizontal lihgaleft (right) plane ofl is the half plane divided by
[ and has a point € R? havingy-coordinatey(p) = 0 andz-coordinater(p) = —oo (z(p) = 00). A
polygon is on the left(right) of alingl if M is contained on the left (right) plane bfA non-horizontal
line [ is onthe left(right) of polygon\/ if M is on the right (left) of. Then, the following lemma holds.

Lemmal For any two times,t' € T, (t < t/),
MVI(t) # MVI(t)
if and only if the one of following conditions satisfies:

(p) There exists atime,,t < ¢, < t/, when an extensiol(e?) € LY becomes an iso-common tangent
on the left of bothV/y and M, (¢,,) in the projected spacéy;

(g) There exists a time,t < t, < t/, when an extensiot(eg?) € LY becomes an iso-common tangent
on the right of both\/, and M (t,) in the projected spacé&;

(r) There exists atime.t < ¢, < ¢/, when an extensiol(e}) € L' becomes an iso-common tangent
on the left of bothV/,(¢,) and M in the projected spacé’;

(s) There exists a time,,t < t; < t’. when an extensiot(ejl-) € L' becomes an iso-common tangent
on the left ofM((¢s) and M, in the projected space’.

Proof One can easily observe that mutual visible interval$ I (¢) changes only if an extension be-
comes an iso-common tangent/df and M, (t). Thus, we only show the sufficiency in below.

(p): Letli(e ) be an extension offo satisfying (p) at timet,, andMV'I(t,) = (p,q,r,s) be the cor-
respondlng mutual visible mtervals See Figure 4. Thens j and MVI(t,) = (j,q,r,s) since
eg? = (v ?, g+1) Fort € T', letl,(t) be the left iso-common tangent &f, and M (¢). Then, for a small
real numbee > 0, [,(t, — ¢) tOUCheSU? attimet, — ¢, and hence\lVI(t, — ¢) = (j,q,7,5). Onthe



Figure 6: An MVI-tree stores’T and MVZ.

other hand, thé, (¢, + <) touches another vertex, , of ¢ at timet,, + ¢, and hence VI (t, + ¢) =
(j +1,¢,7,5). Thus, the visible interval I, [v]), vJ] decrease and turns intd/,y, [v), |, vY].
(q): Let l(e?) be an extension o.ff? satisfying(¢) at timet,, andMVI(t,) = (p,q,r, s) be the corre-
sponding mutual visible intervals. See Figure 5. Thes; j + 1 andMVI(t,) = (p,j + 1,7, s) since
) = (v),v9,,). Fort € T, letl,(t) be the right iso-common tangent 8f, and M, (t). Then, for a
small real numbet > 0, [,(t, —¢) touchesujo. attimet, — e, and hencé/VI(t, —¢) = (p,j,7,s). On
the other hand, thk (¢, + ¢) touches another verteX , | of ¢! attimet,, + ¢, and henc@/ VI (t, +¢) =
(p,j +1,7,5). Thus, the visible interval I, [vp, v]] increases and turns intd/,y, [vp, v3, .
(r): The proof of this case is similar as the cdg¢. Ther changes and the intervill,,, decrease if
this case is occur.
(s): The proof of this case is similar as the cdse Thes changes and interval I, increase if this
case is occur. O
This lemma 1 implies that the sort of mutual visible intesvate discrete and finite. Thlanging
timeis the time when mutual visible intervals change. We dengt€h C T the set of all of changing
times. LetC7T,, CT,,CT,,CT, be the sets of changing times satisfying the condition ofnen(p),
(q), (r), (s),respectively, and let'7° = CT, U CT,, CT' = CT, U CTs. Note thatCT = CT° U
CT' = CT, U CT, U CT, U CT,. We assign the total order 167 according to the natural order
of time. The ordered set'T" is denoted by(cty, cto, - - , ct,,), Wherem is the number of changing
times. For every:,1 < k < m, mutual visible intervals\/VI(t) is the same duringt;, < t < ctpi1.
Let MV I} be the mutual visible intervald/VI(t) during cty, < t < ctgy1, let MV Iy be during
t < ct1, and letM 'V I,,, duringct,,, < t. We denote the ordered set of mutual visible intervals\by 7T

= (MVIy,MVI,- - ,MVI,,).

4 MVl-tree

An mutual visible intervals search tréBVI-tree) is a tree like data structures, which stores eaakual
visible intervalsMV I, € MVT in leaves, stores each changing timg € C'T in internal nodes, and
enable to search/V I(t) for a query timef € T. The structure of internal nodes is called dyindex
part of an MVI-tree, and can be constructed as a balanced treeasuahred-black tree[3]. Thus, every
MV I(t) can be found in tim&(log V) using an MVI-tree. Figure 6 illustrates an MVI-tree.

Now,we give an algorithnConstruct MVI-tree for constructing an MVI-tree as follows.

Algorithm 1 Construct MVI-tree
(T1) Find CT° = CT, U CT, in the projected spac€, of My;
(T2) Find CT' = CT, U CT, in the projected spac®; of M;



(T3) Find CT by mergingCT? andCT";

(T4) Calculate the initial mutual visible intervald/ V' I,, = MV I(0) from the initial configurationM
(0) = {Mo(0), M1 (0)};

(T5) Calculate mutual visible interval3/V I, ¢ MVZ from MV I;_1 or MV I}, for everyk,1 <
k< m;

(T6) Construct MVI-tree fronC'T and MVT.

In below, we explain the detail d@@onstruct MVI-tree.

4.1 Tangent Point search tree

EachCT" can be found by detecting tangent poinfs" of M, (t) passed by the extensidh € L.
Using this property, a straightforward algorithm is obtaras follows. For each extensidnj?ne L of
M;, it finds tangent point; ™ on M, (t) by checking every vertex aff;.(¢), and would take time
O(n;y1). Thus, it would take tim& (ngn;) = O(N?) for finding CT*.

Our first idea is to construct an intermediate date struatalied atangent point search tre@ P-
tree) since many tangent points should be found. We denategemt point search tree 81, (t) by
TP(M;,(t)). Fortwo pointsp;, po € R?, theangled(p1ps) of a vectorp;ps is measured counterclock-
wise at a poinp; from the +z-direction and ranges ift), 2r). We may omit (mod 2) since every

angle is ranges ifp, 2r). A normal vectorn(e;™!) of ¢/*! = (v, v/1]) is a unit vector satisfying

. _—
O(n(eth)) = (v it — 5. Similarly, anormal vectorn(l) of a line ! is defined by two points
p1.p2 € 1. For eache“rl a normal vectom(e ”1) is perpendicular to an ordered ed@;él ;j;ll and

points outside oMHl( ). We assume, with out loss of generality, that the afgige"")) of edgee;™
is the minimum during all normal vectors of edg%él Then, the following lemmas obviously holds.

Lemma 2 For each edg@é*lof M;+1(t), the following inequality satisfies:

O(n(eg)) < O(n(er™)) < - < O(n(ef))).

n;—1

Lemma 3 In projected spacé’;, a non-horizontal lind passing through a vertezxfjrl of M;yi(t)isa
tangent line ofAZ; 4 (¢) if and only if either(:) or (i) holds:

()
f(n(e;)) < 6(n(1) < O(n(e;™))
(i) .
O(n(e;™))) < 0(n(l)) + 7 < O(n(e;™))

By Lemma2, we can assign the total order to the set of edgésof M;,,(t) using the angle
f(n(e/1)). Thus, the tangent point search tie#(M; 1 (t)) stores all edges;"" of M, ,(t) according
to the total order of the angles. We insert every eq@é 0 <j < mnjt1,t0TP(M;41(t)) by calculating
the angled(e ”1) as key. We construct' P(M;+1(t)) as a balanced tree. UsifigP(M;+1(t)), we can
find a tangent poma'z“rl touched by extensmlj of M; intime O(log n;4+1).
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Figure 7: The relationship between an extension and a chgtigne.

4.2 Thedetail of Construct MVI-tree

We first show the detail of steps (T1)-(T3). We denotd () ps) the line translated fromhaccording to
p1ps. Then, the following algorithnfFind CT" finds CT".

Algorithm 2 Find CT*
(CT1) Construct a tangent point search tré&” (M, (t)) of M;11(t);

(CT2) For each edge’; of M; and its extensiol, € L', execute the following (CT3)-(CT5);

(CT3) Search orll’P(M;+(t)) as keyH(n(l;*")) and §(n(I’*")) + 7, and find tangent points;™
andv, ', each of which is passed by a tangent line parallefito

(CT4) Calculate the crossing pointg, = I (v, ¢iy1)NPi(Cip1) andepy = Li(vj7 " ¢ip1)NP(Cig).
(See Figure 7.) Determine which crossing points abewg 6r cpy/) lies on the same side qlfas
the representative point, and letep* be such crossing point;

(CT5) Calculate the changing time& when the representative poiat. (¢) reaches the cross poinp*,
then insertct to CT".

For M; and M, (t), there exist both iso-common tangent and hetero-commagetan Therefore, for
each extensiotg—, two tangent points are foun@“, vfjl by (CT3), one of which is the tangent point of
iso-common tangent and the other is one of hetero-commaeiteinHowever, from the configuration of
the scene, we can determine which tangent point is one oftheammon tangent. These determination
is done in (CT4). Figure 7 illustrates the relationship sw an extension and a changing time. The
set of changing tim&T? = CT, U CT, = (ct,--- ,ctd, ) can be found by executingind CT in
Py. Similarly, CT* = CT, U CT, = (ct},--- ,ct}, ) can be found by executingind CT" in P,. Each
of these sets has the total order, and hence the total ordetétd” = (cty,--- ,ct,,) = CTp U CTy is
obtained by merging'7T° andCT*, wheremg = |CT°|, m1 = |CT'|, m = |CT|(= mg + m1). This
merging step can be done in tirg¥|C'T|) = O(N) [3].

In step (T4), iso-common tangents bfy(0), M;(0) can be found by typical geometric algorithm
[6, 11, 13], and hence the initial mutual visible intervals/ 1(0) can be also found in tim@(N).

Finally, we give the detail of steps (T5),(T6). Each chaggime ct;, € CT = (cty, -+ ,ctm)
is contained in the one of four subsety;, C'T;, CT,, C'T;. These assignment can be found when
Find CT" is executed. Thus, by the proof of Lemma 1, each mutual @sittervals/V I, can be
calculating fromM V' Ij,_; or MV Ijy,. For example, iicty, € CT, then MV I, = MVI(cty +¢) =
(p+1,q,7m,8)andMV I,y = MVI(cty, —e) = (p,q,r,s). Note thatM VI, = MVI(0), and hence
the following inequality is satisfiedet,, < 0 < cty,4+1. For any positive changing times;, > cty,,



we can calculate every mutual visible intervalsV I (cty) from MV I;_,, and hence we can obtain
mutual visible intervals for positive changing times framV' I, = MV I(0) to MV I,,, = MV I(c0).
Similarly, we can obtain mutual visible intervals for nagatchanging times fromd/V I, = MV I(0)

to MVIy = MVI(—oc0). Thus, we can obtaiMVZI = (MVIy,--- ,MVI,,---,MVI,), where
MVI(—o0) = MVIy MV Iy, = MVI(0),andMVI,,, = MV I(c0)). The MVI-tree can be construct
by inserting everyt € CT as internal nodes and evelyV I, € MV7T as leaf nodes.

4.3 Complexities

In this section, we analyze the complexity of the algoritGonstruct MV -tree.

We first analyze the complexity of the algorithRind C'T%. A balanced tree withn nodes can
be constructed in tim@&(m log m) by inserting every nodes to the empty tree, and it has hetghbat
O(logm)[3]. Thus, atangent point search trfB& (1, (t)) can be constructed in tint@(n;+1 log ni+1)
in (CT1). In (CT2)-(CT5), every tangent points can be foundiine O(logn;;1) sinceT P(M;;1(t))
has height at moP (log n;.1). Therefore, all tangent points 6f7" can be found in im@ (n; log n; 1)
since|L| = n;. Therefore, the following lemma holds.

Lemma4 The algorithmFind CT" runs in timeO(N log N) using space)(N).

We next analyze the complexity Gonstruct MVI-tree. The following lemma holds for the sétT
of changing time.

Lemma5 The seCT has at mosO (V) elements.

Proof In projected spacé;, each extension‘j. € L' becomes an iso-common tangent\éf and M, 1 (¢)
exactly once, and hen¢€T"| = |Li| = n;. Thus,|CT| < |CT| + |CT"| = ng + n1 = N. O

By lemma 4 and lemmas, each set of changing tif¥#é andCT"* is found in timeO(N log ) in
(T1),(T2). The merging operation take linear time[3], amshteC'T" can be found in tim& (|CT|) =
O(N) in (T3). The initial mutual visible intervald/V'1(0) is calculated in time)(N) in (T4) using
typical geometrical algorithm[6, 11, 13]. The setVZ of mutual visible intervals can be found froti’"
andMV'I(0) intime O(N) in (T5). Thus, an MVI-tree can be constructed in time in ti@g\V log N)
and has height at mos2(log N) since it is a balanced tree [3]. Therefore, the followingotieen and
corollary holds.

Theorem 1 The algorithmConstruct MVI-tree constructs anMV I-tree in timeO(N log N) using
spaceO(N). For any query time € T, mutual visible interval$// V' I(¢) can be found in timé&(log N)
using theM V I -tree.

Corollary 1 Using an MVI-tree, a searching problem of moving objekts(t) and the time sel’» can
be solved in tim&((F + N)log N) usingO(NN) space, where&V = ny +ny andF = |Tp|.

5 MVI-list

An mutual visible search ligs a sequential data structures which stores pairs of chgtighect;, € CT
and mutual visible intervald/V'I;, € MVZ. Each elementsct;, MV I;,) of an MVI-list is stored
according to the total order of the changing time. Figurduitates an MVI-list. MV 1(t) for a query
time ¢ can be found by using “binary search algorithm” on the MékLlisince an MVI-list stores each
element by the increasing order of time [3].

Now, we give an algorithnConstruct MVI-list for constructing MVI-list as follows.
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Figure 8: An MVI-list.

Algorithm 3 Construct MVI-list
(L1) Foreveryu € {p,q,r, s}, constructu-list;

(L2) ConstructMV I-list by mergingp- ¢- r- s-lists.

The main idea of this algorithm is to find every subsefs,, u € {p, ¢,r, s}, of changing time_T
separately. In below, we show only the algorithm for coredtng p-list since the other three lists can be
similarly found.

5.1 Constructing p-list

We first show additional lemmas for constructindjst.

Lemma6 Letv! be the vertex of\/, with maximumy-coordinate, andv be the vertex of\/; with
minimumz-coordinate. ThenM VI(—o0) = (a,q,r,s), MVI(c0) = (b, q,7,s), and every vertex) is
contained in the path from{ to v on B(My) duringt € T = (—o0, 00).

Proof One can easily observe that the angle of the left iso-commagent line ranges ifr, 27) since

My lies abovePy(C;). Furthermore, obviously, the verteX is passed by the tangent lidg with

the angled(19) = 7 whent = —oo, and hence)? is one of the terminal of mutual visible intervals

MV I(—oc0). Similarly, the vertexy) is passed by the tangent ligwith the angled(I)) = 27 when

t = oo. Moreover, every)) clearly appears betweef] andv;. Thus, this lemma holds. 0
For eachv) andel) = (vp,vp, ), a < p < b, letct(v)) be the changing time when the extension

1(e)) € L® becomes the left iso-common tangentid§ and A/ (¢). Then, the following lemma satisfies.

Lemma7 For each vertex)) in the path(v),--- 9, ,v}), each changing timest(v) increase
according to increasing indexfroma to b, that is, the se€'T), = ( ct(v)), - -, ct(v)), -+, ct(v))) has
the natural order of time.

Proof For eachp, a < p < b, the angle9(e2) increase according to increasing ingesince M is a

convex polygon. Therefore, each extens&(ng) intersects the horizontal linB,(C1) by the increasing

order of thez-coordinate. Moreover, one can easily observe that eveapgihg time appears by the

increasing order. See Figure 9. O
By Lemmas 6 and 7, we show the algoriti@onstruct p-list as follows.

Algorithm 4 Construct p-list

(P1) Find the vertexo? of My with the maximuny-coordinate, and find the verteX' of M, with the
minimumy-coordinate;

(P2) For eachp, a < p < b, repeat the following (P3)-(P5);

(P3) Find the tangent vertex} of M (t) touched by the extensid(e)) from left, then calculate the
corresponding changing time (v)) from a left iso-common tangent lingv;

(P4) Add the pair(ct(v)), v)) to the last ofp-list.
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Figure 9: Constructing p-list.

5.2 Complexities

In this subsection, we analyze the complexity of the alganiConstruct MVI-list.

We first analyze the complexity of the algorithBonstruct p-list. One can easily find the vertex
with maximum or minimuny-coordinate in time)(V), and hence (P1) can be executed in tigV).
Every v) can be found by the previous edgg ; = (vj_;,vp) of My. Furthermore, one can easily
observe that the tangent vertek of the left iso-common tangent Iimgvi appears counterclockwise
in the vertex list ofM;(¢). Thus, by Lemma 7, the changing timt{vg) can be found in time& (1) in
(P3). Thus, (P2)-(P4) can be executed in linear time in.tdtals, the algorithnConstruct p-list can
be executed in timé& (V).

For the algorithmConstruct MVI-list, (L1) can be done by executingonstruct u-list for every
u € {p,q,r, s}, and hence would take tim@(N). In (L2), the four-way merging technique should be
used, and this can be done in ti¢N) [3].

Thus, the following theorem and corollary holds.

Theorem 2 The algorithmConstruct MVI-list constructs am/V I-list in timeO(N') using spacé(N).
For any query time € T', the mutual visible intervald3/ V' I(¢) can be found in timé&(log ) using the
MV I-list.

Corollary 2 Using theM V I-list, a searching problem of moving objects (¢) and the time sef’r can
be solved in tim& (N + F'log N) usingO(N) space, wheréV = ng +n; andF = |Tx|.

6 Conclusion

In this paper, we give several efficient methods for seacchtie mutual visible intervals for the case
where the trajectories of moving objects are known. We give data structures, called an MVI-tree
and an MVI-list, if two convex polygond/y, M1 moves by uniform motion. The algorith@onstruct
MVI-tree constructs an MVI-tree in tim& (N log N) using spac€® (V). Each mutual visible intervals
of an query time: can be found in time&(log N) by using an MVI-tree, that is, by tracing a root-leaf
path on the MVI-tree. The algorithi@onstruct MVI-list constructs an MVI-tree in linear time using



linear space. Each mutual visible intervals of an query tirnan be found in time&)(log N) using an
MVI-list, that is by using the binary search algorithm on M¥I-list.
The following future works remain:

(1) develop methods for searching mutual visible surfaces ofdwnvex polytopes in the space of three
or more degree dimension,

(2) develop methods for searching mutual visible surfaces afimgoobjects which may moves by non-
uniform motion, and

(3) develop methods pairs of mutual visible surfaces among tbrenore moving objects,. .
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